14、前馈神经网络架构与凸性约束在金融建模中的应用

前馈神经网络架构与凸性约束在金融建模中的应用

1. 神经网络与样条函数的联系

在特定的权重和偏置配置下,当隐藏单元为每个观测值定义Voronoi单元时,神经网络可被视为单变量样条函数。这一结果可推广到更高维度和更高阶的样条函数。这意味着样条函数是神经网络的一种特殊情况,这与将神经网络视为广义逼近和回归技术的观点相一致。将神经网络表示为样条函数,使得逼近理论能够指导网络的设计。不过,将神经网络等同于样条函数,并不能很好地解释为何以及何时需要多层结构。

2. 为何需要深度网络

从统计和信息理论的角度来看,向深度神经网络的扩展是有充分依据的。

  • 性能优势 :深度网络相较于线性加法模型(如线性回归)能实现更优的性能,同时避免了维度灾难。
  • 理论发展 :有许多理论研究刻画了网络深度、宽度和稀疏性水平对逼近行为的影响。例如,Bartlett等人证明了具有分段线性激活函数(如ReLU)的深度前馈神经网络分类器的可表达性的上下界,且这些界在几乎整个参数范围内都很紧密。他们还给出了VC维度定理:存在一个通用常数C,对于任意的W和L(W > CL > C²),存在一个层数≤L且参数≤W的ReLU网络,其VC维度≥WLlog(W/L)/C。
  • 深度对VC维度的影响 :网络深度对VC维度的影响取决于激活函数的非线性程度。对于分段常数函数,无影响;对于分段线性函数,呈线性关系;对于一般的分段多项式函数,最多呈二次关系。
  • 浅层网络的局限性 :大
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值