【BZOJ1026】【SCOI2009】windy数(数位dp)

17 篇文章 1 订阅
1 篇文章 0 订阅

Description

  windy定义了一种windy数。不含前导零且相邻两个数字之差至少为2的正整数被称为windy数。 windy想知道,
在A和B之间,包括A和B,总共有多少个windy数?

Input

  包含两个整数,A B。

Output

  一个整数

Sample Input

【输入样例一】

1 10

【输入样例二】

25 50

Sample Output

【输出样例一】

9

【输出样例二】

20

HINT

【数据规模和约定】

100%的数据,满足 1 <= A <= B <= 2000000000 。

题解:数位dp。我机房某神犇说他自创了一种数位dp解法,代码超级短,然而T了哈哈
言归正传。受网上大牛启发,我开始觉得记忆化搜索,是一个数位dp不错的解法,适用范围极广。比如此题,可用DP(pos,pre,lim)来记录当前位置,前一位的数字,与当前位置填数是否受限(顶到询问区间的上界),dp[pos][pre]记录满足条件数的个数,求[1,l-1]和[1,r]分别有几个,相减就是答案了。
代码如下:

#include<iostream>
#include<stdio.h>
#include<string.h>
#include<math.h>
#define ll long long
#define inf 0x3f3f3f3f
using namespace std; 
int dp[50][20],bit[50];
int a,b;
int dfs(int pos,int pre,bool lim)
{
    int p;
    if(pos<=0) return 1;
    if(pre>=0 && !lim && dp[pos][pre]!=-1) return dp[pos][pre]; 
    int end=(lim ? bit[pos] : 9);
    int ret=0;
    for(int i=0;i<=end;i++)
    if(fabs(i-pre)>=2)
    {
        p=i;
        if(pre==-3 && i==0) p=pre;
        ret+=dfs(pos-1,p,lim&(end==i));
    }
    if(pre>=0 && !lim) dp[pos][pre]=ret;
    return ret;
}
int solve(int x)
{
    int len=0;
    while(x) bit[++len]=x%10,x/=10;
    memset(dp,-1,sizeof(dp));
    return dfs(len,-3,1);
}
int main()
{
    scanf("%d%d",&a,&b);
    printf("%d\n",solve(b)-solve(a-1));
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值