Description
windy定义了一种windy数。不含前导零且相邻两个数字之差至少为2的正整数被称为windy数。 windy想知道,
在A和B之间,包括A和B,总共有多少个windy数?
Input
包含两个整数,A B。
Output
一个整数
Sample Input
【输入样例一】
1 10
【输入样例二】
25 50
Sample Output
【输出样例一】
9
【输出样例二】
20
HINT
【数据规模和约定】
100%的数据,满足 1 <= A <= B <= 2000000000 。
题解:数位dp。我机房某神犇说他自创了一种数位dp解法,代码超级短,然而T了哈哈。
言归正传。受网上大牛启发,我开始觉得记忆化搜索,是一个数位dp不错的解法,适用范围极广。比如此题,可用DP(pos,pre,lim)来记录当前位置,前一位的数字,与当前位置填数是否受限(顶到询问区间的上界),dp[pos][pre]记录满足条件数的个数,求[1,l-1]和[1,r]分别有几个,相减就是答案了。
代码如下:
#include<iostream>
#include<stdio.h>
#include<string.h>
#include<math.h>
#define ll long long
#define inf 0x3f3f3f3f
using namespace std;
int dp[50][20],bit[50];
int a,b;
int dfs(int pos,int pre,bool lim)
{
int p;
if(pos<=0) return 1;
if(pre>=0 && !lim && dp[pos][pre]!=-1) return dp[pos][pre];
int end=(lim ? bit[pos] : 9);
int ret=0;
for(int i=0;i<=end;i++)
if(fabs(i-pre)>=2)
{
p=i;
if(pre==-3 && i==0) p=pre;
ret+=dfs(pos-1,p,lim&(end==i));
}
if(pre>=0 && !lim) dp[pos][pre]=ret;
return ret;
}
int solve(int x)
{
int len=0;
while(x) bit[++len]=x%10,x/=10;
memset(dp,-1,sizeof(dp));
return dfs(len,-3,1);
}
int main()
{
scanf("%d%d",&a,&b);
printf("%d\n",solve(b)-solve(a-1));
return 0;
}