Description
老师交给小可可一个维护数列的任务,现在小可可希望你来帮他完成。 有长为N的数列,不妨设为a1,a2,…,aN 。有如下三种操作形式: (1)把数列中的一段数全部乘一个值; (2)把数列中的一段数全部加一个值; (3)询问数列中的一段数的和,由于答案可能很大,你只需输出这个数模P的值。
Input
第一行两个整数N和P(1≤P≤1000000000)。第二行含有N个非负整数,从左到右依次为a1,a2,…,aN, (0≤ai≤1000000000,1≤i≤N)。第三行有一个整数M,表示操作总数。从第四行开始每行描述一个操作,输入的操作有以下三种形式: 操作1:“1 t g c”(不含双引号)。表示把所有满足t≤i≤g的ai改为ai×c (1≤t≤g≤N,0≤c≤1000000000)。 操作2:“2 t g c”(不含双引号)。表示把所有满足t≤i≤g的ai改为ai+c(1≤t≤g≤N,0≤c≤1000000000)。 操作3:“3 t g”(不含双引号)。询问所有满足t≤i≤g的ai的和模P的值 (1≤t≤g≤N)。 同一行相邻两数之间用一个空格隔开,每行开头和末尾没有多余空格。
Output
对每个操作3,按照它在输入中出现的顺序,依次输出一行一个整数表示询问结果。
Sample Input
7 43
1 2 3 4 5 6 7
5
1 2 5 5
3 2 4
2 3 7 9
3 1 3
3 4 7
Sample Output
2
35
8
HINT
【样例说明】
初始时数列为(1,2,3,4,5,6,7)。
经过第1次操作后,数列为(1,10,15,20,25,6,7)。
对第2次操作,和为10+15+20=45,模43的结果是2。
经过第3次操作后,数列为(1,10,24,29,34,15,16}
对第4次操作,和为1+10+24=35,模43的结果是35。
对第5次操作,和为29+34+15+16=94,模43的结果是8。
测试数据规模如下表所示
数据编号 1 2 3 4 5 6 7 8 9 10
N= 10 1000 1000 10000 60000 70000 80000 90000 100000 100000
M= 10 1000 1000 10000 60000 70000 80000 90000 100000 100000
题解:
裸线段树,维护两个tag:加法、乘法。注意运算优先级即可。
代码如下:
#include<iostream>
#include<stdio.h>
#include<algorithm>
#include<string.h>
#include<math.h>
#define ll long long
#define inf 0x7f7f7f7f
#define N 100005
#define ls (rt<<1)
#define rs (rt<<1|1)
#define mid (l+r>>1)
using namespace std;
struct seg
{
int l,r;
ll sum,mul,add;
}t[N*3];
ll p,c;
int n,m,op,a,b;
void pushup(int rt){t[rt].sum=(t[ls].sum+t[rs].sum)%p;}
void pushdown(int rt)
{
int len=t[rt].r-t[rt].l+1;
t[ls].add=(t[ls].add*t[rt].mul+t[rt].add)%p,t[rs].add=(t[rs].add*t[rt].mul+t[rt].add)%p;
t[ls].mul=t[ls].mul*t[rt].mul%p,t[rs].mul=t[rs].mul*t[rt].mul%p;
t[ls].sum=(t[ls].sum*t[rt].mul+t[rt].add*(len-(len>>1)))%p,t[rs].sum=(t[rs].sum*t[rt].mul+t[rt].add*(len>>1))%p;
t[rt].add=0,t[rt].mul=1;
}
void build(int rt,int l,int r)
{
t[rt].l=l,t[rt].r=r;
t[rt].add=0,t[rt].mul=1;
if(l==r)
{
scanf("%lld",&t[rt].sum);
return ;
}
build(ls,l,mid);build(rs,mid+1,r);
pushup(rt);
}
void update(int rt,int L,int R,ll c,int op)
{
int l=t[rt].l,r=t[rt].r;
if(L<=l && r<=R)
{
if(op==1)
{
t[rt].add=(t[rt].add*c)%p;
t[rt].mul=(t[rt].mul*c)%p;
t[rt].sum=(t[rt].sum*c)%p;
}
else
{
t[rt].add=(t[rt].add+c)%p;
t[rt].sum=(t[rt].sum+(ll)c*(r-l+1))%p;
}
return;
}
pushdown(rt);
if(L<=mid) update(ls,L,R,c,op);
if(R>mid) update(rs,L,R,c,op);
pushup(rt);
}
ll query(int rt,int L,int R)
{
int l=t[rt].l,r=t[rt].r;
if(L<=l && r<=R) return t[rt].sum%p;
pushdown(rt);
ll ans=0;
if(L<=mid) ans+=query(ls,L,R);
if(R>mid) ans+=query(rs,L,R);
return ans%p;
}
int main()
{
scanf("%d%ld",&n,&p);
build(1,1,n);
scanf("%d",&m);
for(int i=1;i<=m;i++)
{
scanf("%d%d%d",&op,&a,&b);
if(op==3) printf("%lld\n",query(1,a,b)%p);
else
{
scanf("%lld",&c);
update(1,a,b,c,op);
}
}
return 0;
}