今天跟大家分享下前天新出的论文 SOLOv2: Dynamic, Faster and Stronger,一看这名字就知道很霸气!SOLO 超越自己,在原有架构基础上引入动态卷积和发明了Matrix NMS,再次刷新COCO 实例分割数据集的最高精度(41.7 AP),而且其轻量级版本精度与Mask RCNN相近(37.1 AP vs 37.8),而速度能达到 31.3 fps(GPU V100)!
下图中红色标出的即为SOLOv2的结果:
可谓在实时轻量级和高精度两个战场都很抢眼!
该文作者信息:
论文出自沈春华老师组,作者单位澳大利亚阿德莱德大学、同济大学、字节跳动公司。
作者是在自己之前的工作SOLO基础上做的改进,所以我们有必要看看SOLO的架构:
SOLO架构
长久以来实例分割都是在目标检测给出框的情况下再进行目标mask分割,而这种思路和人类的视觉感知是不同的,人眼是可以直接定位到目标的轮廓的。SOLO的本意为 Segmenting Objects by Locations,即根据位置分割目标。
SOLO的预测头<