专刊征稿:面向机器人持续感知的具身多模态数据融合

关注公众号,发现CV技术之美

同济大学MIAS Group近期在《Pattern Recognition Letters》(CCF-C类期刊)上组织的专刊征稿正式发布。欢迎大家关注、转发。

主题:Embodied Multi-Modal Data Fusion for Robot Continuous Perception(面向机器人持续感知的具身多模态数据融合)

摘要:Embodied multi-modal data fusion represents a cutting-edge frontier in robotics, with the potential to revolutionize how robots perceive, understand, and interact with the world. By integrating diverse sensory modalities, it enables robots to operate autonomously and adaptively in dynamic, unstructured environments. As robots become increasingly integral to sectors such as healthcare, manufacturing, transportation, and services, the demand for robust, efficient, and intelligent perception systems is more critical than ever. Embodied multi-modal data fusion addresses these demands by leveraging state-of-the-art technologies—including sensor fusion, machine learning, and embodied cognition—to process complex sensory inputs, make real-time decisions, and adapt continuously to changing environments. This special issue on Embodied Multi-Modal Data Fusion for Robot Continuous Perception serves as a foundational resource, highlighting the field’s interdisciplinary nature and transformative potential. Covering topics such as multi-modal fusion algorithms, embodied cognition, and practical applications, it provides a comprehensive platform for researchers, engineers, and industry professionals to foster innovation and collaboration across disciplines.

征稿方向:

We welcome submissions that present innovative theories, methodologies, and applications in embodied multi-modal data fusion for continuous robot perception:

  • Multi-Modal Data Fusion

  • Embodied Perception

  • Continuous Perception

  • Learning and Adaptation

重要日期:

  • 投稿开放:October 1st, 2025

  • 投稿截止:October 20th, 2025

  • 最终接收:April 1st, 2026

客座编辑:

请点击阅读原文查询详细信息。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值