关注公众号,发现CV技术之美
高翔老师2023全新力作《自动驾驶与机器人中的SLAM技术:从理论到实践》来啦!
看读者们围观高翔老师问问题的这火爆场景,感觉读者们对这本书的热情隔着屏幕都能溢出来了!所以,想要学习SLAM技术的小伙伴一定不要错过这本书!
1.SLAM 技术是什么
SLAM 是Simultaneous Localization and Mapping的缩写,即同时定位与地图构建。
它是一种用于自主导航和机器人感知的技术,旨在通过在未知环境中同时进行自主定位和构建环境地图,实现机器人的导航与路径规划。它涉及到很多复杂的算法和方法,包括特征提取与匹配、传感器融合、滤波器(如扩展卡尔曼滤波器和粒子滤波器)和优化算法等。
SLAM技术主要应用于无人驾驶汽车、无人机、机器人和增强现实等领域。 在实时定位和地图构建的过程中,SLAM系统会使用各种传感器(如摄像头、激光雷达、惯性测量单元等)获取环境信息,并利用这些信息进行自主定位和地图构建。
自主定位是指机器人在未知环境中确定自身位置的过程,通过对传感器数据进行处理和分析,结合地图信息,估计机器人相对于环境的位置和姿态。地图构建则是将机器人在移动过程中获取的传感器数据融合起来,生成环境的地图表示,包括地标、障碍物和空间结构等信息。
2.SLAM 技术可以分为哪几类?
(2)基于传感器类型分类
✔视觉SLAM:主要使用相机或摄像头获取图像信息进行定位和地图构建。
✔激光SLAM:使用激光雷达来感知环境并生成地图,激光测距可以提供精确的距离信息。
(2)基于地图的分类
✔基于拓扑图的SLAM:将环境表示为节点和边的拓扑结构,用于描述不同位置之间的关系。
✔基于网格地图的SLAM:使用二维或三维网格表示环境,将地图分割为离散的网格单元,每个单元表示不同的属性或占据状态。
✔基于稠密地图的SLAM:生成具有高密度信息的地图,通常使用点云或三维模型表示环境。
(3)基于算法的分类
✔滤波器方法:使用滤波器(如扩展卡尔曼滤波器或粒子滤波器)进行状态估计和数据融合。
✔优化方法:通过最小化误差函数或优化目标函数,使用图优化算法(如非线性最小二乘法)进行定位和地图优化。
✔学习方法:利用机器学习或深度学习技术,通过训练数据进行定位和地图构建。
3.具体到激光SLAM,有哪些应用场景?
(1)自主导航和移动机器人:激光SLAM可用于移动机器人的自主导航和路径规划。
(2)无人驾驶和自动驾驶汽车:激光SLAM是无人驾驶和自动驾驶汽车中关键的感知技术之一。激光雷达能够提供车辆周围环境的精确地图和距离信息,用于定位车辆和障碍物检测。通过将激光SLAM与其他传感器(如相机、雷达和GPS)进行融合,实现全面的环境感知和高级驾驶决策。
(3)建筑和室内地图构建:激光雷达可以快速而准确地扫描建筑物的结构,捕捉墙壁、家具和其他物体的几何信息。
(4)无人机和航空领域:激光雷达可以提供无人机周围环境的高精度地图和距离信息,支持无人机的自主飞行、目标检测和障碍物避让。
✔工业自动化和机器视觉:例如,用于机器人在工厂环境中的定位、零件装配和物体识别。激光雷达提供的精确距离信息可以用于精确的位置控制和目标检测。
4.学习激光SLAM技术需要具备的基础知识**
大学本科阶段的基础数学知识,如微积分、线性代数、概率论。
大学研究生阶段的数学知识:最优化、矩阵论,一小部分李群与李代数知识。
计算机科学知识:Linux系统操作、C++语言。
或者读完《视觉SLAM十四讲:从理论到实践》的前6章,熟悉一些基础的数学原理和优化库的基本使用方法。
具备以上基础知识之后再来看高翔老师的这本新作 《自动驾驶与机器人中的SLAM技术:从理论到实践》 系统学习激光SLAM技术效果更佳哦~~
首批印刷的这本书带有 高翔老师亲笔签名,数量有限 ,以后的印刷批次就没有签名啦,大家速抢!!!
买它,不会后悔的选择!
互动赠书
在本文下方留言区谈一谈自己在学习SLAM或计算机视觉其它方向时的一些方法或心得,点赞前三名将赠送《自动驾驶与机器人中的SLAM技术:从理论到实践》一本。
活动截止时间:2023.8.3-9:00
END
欢迎加入「SLAM」交流群👇备注:SLAM