TMI 2025 | 最新医疗图像分割模型:Zig-RiR,精准分割二维、三维医疗图像

关注公众号,发现CV技术之美

本篇分享 TMI 2025 论文Zig-RiR: Zigzag RWKV-in-RWKV for Efficient Medical Image Segmentation,提出一种新颖的医疗图像分割模型 Zigzag RWKV-in-RWKV (Zig-RiR),可用于精准分割二维、三维的医疗图像。

  • 文章链接:https://ieeexplore.ieee.org/document/10969076

  • 项目链接:https://github.com/txchen-USTC/Zig-RiR


1. 亮点直击

本文提出了一种新颖的医疗图像分割模型 Zigzag RWKV-in-RWKV (Zig-RiR),可用于精准分割二维、三维的医疗图像,其核心亮点包括:

线性复杂度:通过引入RWKV模型的思想,实现了长距离建模的线性计算复杂度,显著提升了效率。

全局与局部特征兼顾:采用嵌套结构(Outer和Inner RWKV块)分别捕捉全局和局部特征,同时保持空间连续性。

高效性与轻量化:在高分辨率(1024 × 1024)医疗图像上测试时,速度比现有最先进方法快14.4倍,GPU内存使用减少89.5%。


2. 解决的问题

当前主流的基于CNN和Transformer结构的医疗图像分割模型存在以下问题:

计算复杂度高:Transformer的自注意力机制导致二次方级别的计算复杂度,限制了模型在高分辨率图像上的应用。

局部特征探索不足:直接应用Vision-RWKV模型时,对局部特征的提取能力较弱,且空间连续性被破坏。

效率与精度权衡困难:现有方法难以在保持高精度的同时实现高效推理。


3. 提出的方法

为解决上述问题,本文提出了 Zigzag RWKV-in-RWKV (Zig-RiR) 模型,具体包括以下创新点:

嵌套结构设计

Outer RWKV块:将局部图像块视为“视觉句子”,用于提取全局信息。

Inner RWKV块:将每个“视觉句子”分解为更小的子块(“视觉单词”),用于进一步探索局部特征,且计算成本极低。

Zigzag-WKV注意力机制

引入一种新的锯齿状扫描机制,在扫描Token时确保空间连续性不遭到破坏。

特征聚合

通过整合“视觉单词”和“视觉句子”的特征,模型能够有效捕捉全局与局部信息,同时保持空间一致性。


4. 实验设置

数据集:实验在四个医疗图像分割数据集(ISIC 2016, ISIC 2018, ACDC, Synapse)上进行,涵盖2D和3D模态。

对比方法:与现有的最先进方法(如基于Transformer和CNN的模型)进行了性能和效率的对比。

测试条件:特别针对高分辨率(1024 × 1024)医疗图像进行了测试,以验证模型在极端场景下的表现。


5. 实验结果

定性结果

在二维ISIC数据集和三维ACDC, Synapse数据集上,Zig-RiR均展现出了明显的精准分割优势。

定量结果

在二维ISIC数据集和三维ACDC, Synapse数据集上,Zig-RiR都表现出极高的分割性能,表明它在提取目标的边界和区域时非常准确。

效率优势

  • 速度提升:相比现有最先进方法,推理速度提高了 14.4倍。

  • 内存优化:在处理1024 × 1024高分辨率图像时,GPU内存使用减少了 89.5%。


结语

Zig-RiR模型通过创新的嵌套结构和锯齿状扫描设计,成功实现了对二维、三维医疗图像的高效率且精准的分割,为该领域提供了先进的解决方案。

最新 AI 进展报道
请联系:amos@52cv.net

END

欢迎加入「医学影像交流群👇备注:med

内容概要:本文详细探讨了制造业工厂中两条交叉轨道(红色和紫色)上的自动导引车(AGV)调度问题。系统包含2辆红色轨道AGV和1辆紫色轨道AGV,它们需完成100个运输任务。文章首先介绍了AGV系统的背景和目标,即最小化所有任务的完成时间,同时考虑轨道方向性、冲突避免、安全间隔等约束条件。随后,文章展示了Python代码实现,涵盖了轨道网络建模、AGV初始化、任务调度核心逻辑、电池管理和模拟运行等多个方面。为了优化调度效果,文中还提出了冲突避免机制增强、精确轨道建模、充电策略优化以及综合调度算法等改进措施。最后,文章通过可视化与结果分析,进一步验证了调度系统的有效性和可行性。 适合人群:具备一定编程基础和对自动化物流系统感兴趣的工程师、研究人员及学生。 使用场景及目标:①适用于制造业工厂中多AGV调度系统的开发与优化;②帮助理解和实现复杂的AGV调度算法,提高任务完成效率和系统可靠性;③通过代码实例学习如何构建和优化AGV调度模型,掌握冲突避免、路径规划和电池管理等关键技术。 其他说明:此资源不仅提供了详细的代码实现和理论分析,还包括了可视化工具和性能评估方法,使读者能够在实践中更好地理解和应用AGV调度技术。此外,文章还强调了任务特征分析的重要性,并提出了基于任务特征的动态调度策略,以应对高峰时段和卸载站拥堵等情况。
内容概要:本文介绍了一个使用MATLAB编写的基于FDTD(时域有限差分)方法的电磁波在自由空间中传播的仿真系统。该系统采用了ABC(吸收边界条件)和正弦脉冲激励源,并附有详细的代码注释。文中首先介绍了关键参数的选择依据及其重要性,如空间步长(dx)和时间步长(dt),并解释了它们对算法稳定性和精度的影响。接着阐述了电场和磁场的初始化以及Yee网格的布局方式,强调了电场和磁场分量在网格中的交错排列。然后详细讲解了吸收边界的实现方法,指出其简单而有效的特性,并提醒了调整衰减系数时需要注意的问题。最后,描述了正弦脉冲激励源的设计思路,包括脉冲中心时间和宽度的选择,以及如何将高斯包络与正弦振荡相结合以确保频带集中。此外,还展示了时间步进循环的具体步骤,说明了磁场和电场分量的更新顺序及其背后的物理意义。 适合人群:对电磁波传播模拟感兴趣的科研人员、高校学生及工程技术人员,尤其是那些希望深入了解FDTD方法及其具体实现的人群。 使用场景及目标:适用于教学演示、学术研究和技术开发等领域,旨在帮助使用者掌握FDTD方法的基本原理和实际应用,为后续深入研究打下坚实基础。 阅读建议:由于本文涉及较多的专业术语和技术细节,建议读者提前熟悉相关背景知识,如电磁理论、MATLAB编程等。同时,可以通过动手实践代码来加深理解和记忆。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值