ICCV2023 | 将隐式神经表征用于“低光增强”,北大张健团队提出NeRCo

关注公众号,发现CV技术之美

70a570d8d3b75ea737eb543daa8df47f.png

【论文题目】Implicit Neural Representation for Cooperative Low-light Image Enhancement
【出处】ICCV 2023
【原文链接】https://arxiv.org/pdf/2303.11722.pdf
【代码链接】(已开源) https://github.com/Ysz2022/NeRCo

导读

本文聚焦于解决制约暗光算法应用的三个问题:

训练集和现实暗光场景的退化特征的差异

现有的评价指标不能很好地衡量人眼感知质量

以及成对的训练集的欠缺

本文针对性地提出了三个机制以实现高效地暗光图像增强

具体来说,

  • 作者发现经过隐式神经表示(INR)后的暗光图像的亮度会与原图有差异,且不同亮度的图像经过INR后都表现出相似亮度。作者利用这种特性归一化输入图像的退化分布,弥合训练数据和实际退化数据之间的特征差异,提升算法的泛化性。

  • 为了得到人眼感知更良好的结果,作者还首次在暗光增强领域引入了CLIP模型的文本-图像对先验,其可以在语义的特征空间中训练模型,而非单一地在图像空间训练。

  • 最后,作者提出了协同训练的机制,让模型能在非成对数据上训练,拜托了对有限成对训练集的依赖。 下面是作者在文章中给出的用INR归一化后的图像亮度变化图.

4b61e5427ef3d9da3849264e0a59d383.png

方法

本文网络由以下部分组成:利用INR实现归一化的图像预处理模块(NRN),从语义空间和图像空间监督训练的鉴别器(TAD)和无监督的协同训练策略。

b03c7ded4fba6187c60115af9ae75c35.png

具体来说,

  • 作者先将待增强的暗光图及其对应的空间坐标用全连接层进行编码,并输出一张图片,鼓励输出结果尽可能地与输入的暗光图相似。

  • 然后,利用增强模块(ResNet)将其恢复成亮光结果。在此过程中还引入注意力模块以针对性地增强不同暗光区域。增强后的结果会喂给TAD鉴别其真伪。作者鼓励非成对的亮光自然图像被TAD鉴别为真,鼓励恢复的亮光结果为伪,以此训练增强模块。

  • 文本驱动的外观鉴别器 该鉴别器由3条支路构成。输入的亮光图像(增强结果or数据集)会分别从颜色维度,高频分量和语义空间三个角度被监督:

136e20363f379474cf4981cc00ea57b9.png

中间的紫色支路是一个普通鉴别器,判断输入图像在像素级别上与真实亮光图之间的差异。下方支路是由Sobel算子和鉴别器组成的高频分量鉴别器。Sobel算子先提取图像的高频分量,再由鉴别器判断其与真实图片的分布差异。

上方是作者引入的CLIP先验指导的文本监督,通过对其图像特征和文本特征,引导模型向与文本更匹配的方向优化。实验证明引入文本监督后的模型,其增强结果更符合文本语义特征的分布,甚至比Ground Truth更符合:

488b552e1854f0b6069f0499c9e5c3b5.png

作者认为这是因为受过CLIP先验的监督后,增强的图像在CLIP的特征空间中会更接近训练所选用的文本特征。作者也选用了不同的文本进行实验:

d382c7aaa5cebd661662a58cba1404dd.png

证明在暗光增强领域,可以选择不同文本指导训练。

实验

f7e13ff1e7a9df736609fd1b135db454.png3fb96546996fc805a946bbc1b6aa072c.png

结论

本文提出了一种用于协同暗光增强的隐式神经表示方法。所提出的NRN对所有输入的退化图作归一化处理,提升模型的泛化性。

并匹配了文本驱动的外观鉴别器,从语义,文本和颜色这三个角度两种模态(文本和图像)监督训练,以增加约束条件,加速寻找最优解并得到感知更佳的结果。

最后,作者构建的协同训练框架可以在非成对的数据集上无监督训练。实验结果表明,所提出的 NeRCo 模型在实现竞争性能的同时比最先进的方法更有效。

b601fc75f92edee49bc0598afe5949a7.jpeg

END

欢迎加入「图像增强交流群👇备注:增强

d8a27df7818ad0bb4e38f40d3ce21568.png

ICCV (International Conference on Computer Vision) 是计算机视觉领域的重要国际会议,每年都会汇聚最新的研究成果。ICCV 2023 版本中,医学图像分割作为其中一个热门研究方向,关注的是如何使用计算机视觉技术来自动分析和分割医学影像中的结构或病变,这对于疾病诊断、手术规划和治疗效果评估具有重要意义。 在ICCV 2023上,可能会探讨以下几个方面: 1. **深度学习方法**:深度学习特别是卷积神经网络(CNN)和递归神经网络(RNN)在医学图像分割中的应用会持续发展,比如U-Net、SegNet、Unet++等模型的改进和集成。 2. **弱监督和半监督学习**:减少标注数据的需求,通过利用大量未标注或部分标注的图像来提升分割性能。 3. **注意力机制**:自注意力机制可能会被用于更精准地聚焦于图像中的关键区域,提高分割的精度。 4. **医学图像的多模态融合**:结合不同类型的医学图像,如CT、MRI、PET等,以获得更全面的特征信息。 5. **迁移学习与预训练模型**:利用预训练在大规模数据集(如ImageNet)上的模型,然后在医疗领域的特定任务上微调。 6. **算法评估与挑战**:如何设计有效的评价指标和基准,以及组织针对特定医学图像分割任务的比赛。 相关问题--: 1. ICCV 2023中有哪些新型的医学图像分割算法被提出? 2. 在医学图像分割中,如何处理数据不平衡的问题? 3. 有没有在ICCV 2023上展示的成功案例,证明了医学图像分割技术的实际临床价值?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值