关注公众号,发现CV技术之美
本篇分享论文A Tree-Guided CNN for Image Super-Resolution
,哈工大、西工大、福大、澳大、港中文联合提出一种树形卷积神经网络的图像超分辨方法。

论文作者:田春伟,宋明键、范晓鹏、郑向涛、Zhang Bob、Zhang David
论文原文:https://ieeexplore.ieee.org/abstract/document/11010139
代码链接:https://github.com/hellloxiaotian/TSRNet.
摘要
深度卷积神经网络能通过深度结构来获得更精准的结构信息,以提高图像超分辨性能。然而,单个深度网络具有积极作用的关键层不易被发现。
本文提出一种树形卷积神经网络的图像超分辨方法。该方法利用树形结构引导深度网络,通过提高重要节点作用来寻找到关键网络层,以扩大关键层次信息关联性来提高恢复图像超分辨模型的自适应性。
为了防止获得结构信息的不足,余弦用来提取跨域信息,提高图像超分辨性能。自适应的Nesterov动量优化器用来优化参数,提高超分辨模型的有效性。实验表明提出超分辨模型在恢复高质量图像上具有优越性。代码在https://github.com/hellloxiaotian/TSRNet处可获取。
正文
本文贡献:
利用二叉树知识实现的树网络能增强关键层次信息的相关性,提高图像超分辨性能。
余弦技术能用来提取跨域信息,提取局部的显著性信息来促进更鲁棒的结构信息,利于恢复高质量图像。
自适应的Nesterov动量优化器能用来优化参数和遏制局部梯度爆炸,进一步提高图像超分辨性能。
本文网路图:

性能验证:





结论
本文提出一种树形网络的图像超分辨方法。该方法能利用不同树的关联来寻找关键的结构信息的作用,提高图像超分辨性能。
为了防止局部关键信息的丢失,余弦技术用来提取方向特征的相似性,促进更多的局部显著性信息,以恢复更高质量图像。为了防止训练过程陷入局部最优,Adan算法用来解决梯度爆炸来优化参数,提高预测图像的质量。
定量分析和定性分析都说明了本文提出方法在图像超分辨上有消息。将来工作将进一步探索不同树之间关联来解决图像超分辨问题。
最新 AI 进展报道
请联系:amos@52cv.net
END
欢迎加入「超分辨率」交流群👇备注:SR