哈工大、西工大、福大、澳大、港中文联合提出一种树形卷积神经网络的图像超分辨方法

关注公众号,发现CV技术之美

本篇分享论文A Tree-Guided CNN for Image Super-Resolution,哈工大、西工大、福大、澳大、港中文联合提出一种树形卷积神经网络的图像超分辨方法。

  • 论文作者:田春伟,宋明键、范晓鹏、郑向涛、Zhang Bob、Zhang David

  • 论文原文:https://ieeexplore.ieee.org/abstract/document/11010139

  • 代码链接:https://github.com/hellloxiaotian/TSRNet.


摘要

深度卷积神经网络能通过深度结构来获得更精准的结构信息,以提高图像超分辨性能。然而,单个深度网络具有积极作用的关键层不易被发现。

本文提出一种树形卷积神经网络的图像超分辨方法。该方法利用树形结构引导深度网络,通过提高重要节点作用来寻找到关键网络层,以扩大关键层次信息关联性来提高恢复图像超分辨模型的自适应性。

为了防止获得结构信息的不足,余弦用来提取跨域信息,提高图像超分辨性能。自适应的Nesterov动量优化器用来优化参数,提高超分辨模型的有效性。实验表明提出超分辨模型在恢复高质量图像上具有优越性。代码在https://github.com/hellloxiaotian/TSRNet处可获取。


正文

本文贡献:

  1. 利用二叉树知识实现的树网络能增强关键层次信息的相关性,提高图像超分辨性能。

  2. 余弦技术能用来提取跨域信息,提取局部的显著性信息来促进更鲁棒的结构信息,利于恢复高质量图像。

  3. 自适应的Nesterov动量优化器能用来优化参数和遏制局部梯度爆炸,进一步提高图像超分辨性能。

本文网路图:

性能验证:


结论

本文提出一种树形网络的图像超分辨方法。该方法能利用不同树的关联来寻找关键的结构信息的作用,提高图像超分辨性能。

为了防止局部关键信息的丢失,余弦技术用来提取方向特征的相似性,促进更多的局部显著性信息,以恢复更高质量图像。为了防止训练过程陷入局部最优,Adan算法用来解决梯度爆炸来优化参数,提高预测图像的质量。

定量分析和定性分析都说明了本文提出方法在图像超分辨上有消息。将来工作将进一步探索不同树之间关联来解决图像超分辨问题。

最新 AI 进展报道
请联系:amos@52cv.net

END

欢迎加入「超分辨率交流群👇备注:SR

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值