在大模型发展历程中,有两个比较重要点:第一,Transformer 架构。它是模型的底座,但 Transformer 不等于大模型,但大模型的架构可以基于 Transformer;第二,GPT。严格意义上讲,GPT 可能不算是一个模型,更像是一种预训练范式,它本身模型架构是基于 Transformer,但 GPT 引入了“预测下一个词”的任务,即不断通过前文内容预测下一个词。之后,在大量的数据上进行学习才达到大模型的效果。
之所以说 Transformer 架构好,是因为 Transformer 能够解决之前自然语言处理中最常用的 RNN 的一些核心缺陷,具体来看:一是,难以并行化,反向传播过程中需要计算整个序列;二是,长时依赖关系建模能力不够强;三是,模型规模难以扩大。
那么,Transformer 具体是如何工作的?
首先,是对输入进行标识符化,基于单词形式,或字母,或字符子串,将输入文本切分成几个 token,对应到字典中的 ID 上,并对每个 ID 分配一个可学习的权重作为向量表示,之后就可以针对做训练,这是一个可学习的权重。
在输入 Transformer 结构之后,其核心的有自注意力模块和前向传播层。而在自注意力模块中,Transformer 自注意力机制建模能力优于 RNN 序列建模能力。因此,有了 Transformer 架构后,基本上就解决了运行效率和训练很大模型的问题。
基于 Transformer 架构的主流语言大模型主要有几种: