一 数据筛选
数据筛选要求我们在表中筛选出符合条件的数据。
1. 获取数据
2. 使用数据
明确了筛选条件后,就可以借助条件判断语句,比较运算符,成员运算符和逻辑运算符等Python基础知识,实现对于数据的筛选
3. 数据输出
① 将筛选的结果存入学过的数据结构里,比如:列表,元组或字典。
② 将筛选的结果存入文件中。
③ 将筛选的结果打印出来。
from openpyxl import load_workbook,Workbook
#获取数据
wb = load_workbook('D:/博士生期间资料/python/自动化办公/第四关 数据筛选和数据匹配/数据/10月考勤统计.xlsx')
ws = wb.active
#获取表头数据
late_header = []
for cell in ws[1]:
late_header.append(cell.value)
#print(late_header)
#['工号', '姓名', '部门', '迟到时间(分钟)', '迟到次数(次数)']
#将获取的表头作为表头写入新的excel表头
new_wb = Workbook()
new_ws = new_wb.active
new_ws.append(late_header)
#获取表中数据
for row in ws.iter_rows(min_row=2,values_only=True):
work_id = row[0]
name = row[1]
department = row[2]
time = row[3]
number = row[-1]
#筛选数据
if time >45 and number>3:
new_ws.append(row)
new_wb.save('D:/博士生期间资料/python/自动化办公/第四关 数据筛选和数据匹配/数据/10月迟到信息表.xlsx')
二 数据匹配
数据匹配需要我们在多个表之间匹配相关的数据。
1.获取数据
2.使用数据
我们需要在这一步实现数据匹配功能,仔细观察上面两张表格可知,二表可以依靠工号连接起来
先要明确表格之间的关联关系,然后将获取到的某一表格中的数据,按照需要存储起来(推荐使用字典,把可以连接表格的数据作为键,要匹配的数据作为值)。
再将另一个表格中要匹配的值与字典中对应的值关联起来,实现匹配逻辑
3. 数据输出
from openpyxl import load_workbook,Workbook
#获取第一张表中的迟到数据
path1 = 'D:/博士生期间资料/python/自动化办公/第四关 数据筛选和数据匹配/数据/10月考勤统计.xlsx'
path2 = 'D:/博士生期间资料/python/自动化办公/第四关 数据筛选和数据匹配/数据/迟到次数月度统计(10月更新).xlsx'
wb1 = load_workbook(path1)
ws1 = wb1.active
late_dict = {}
info_dict = {}
final_dict = {}
row_num = ws1.max_row
#print(row_num)
for row in ws1.iter_rows(min_row=2,max_row=row_num,values_only=True):
worker_id = row[0]
name = row[1]
department = row[2]
number = row[-1]
'''info_dict['姓名'] = name
info_dict['部门'] = department
info_dict['迟到次数'] = number'''
late_dict[worker_id] = number
#print(late_dict)
#获取第二张表中的工号和迟到次数
wb2 = load_workbook(path2)
ws2 = wb2.active
for row in ws2.iter_rows(min_row=3,values_only=True):
labor_id = row[0]
times = row[12]
if late_dict[labor_id] != times:
print('工号为{}的员工迟到次数有误,需要重新核对'.format(labor_id))