本章节是综述,介绍了《智能网联汽车协同决策与规划技术》的研究内容。
智能决策技术是指融合多传感器信息、根据驾驶需求而进行的控制决策,包括行为预测、任务决策、路径规划、行为决策等多个方面,是自动驾驶汽车的大脑。从空间尺度上,路径规划可以分为全局路径规划和局部路径规划;从时间尺度上,路径规划可以分为静态规划和动态规划,传统路径规划规划已经能够实现实时性不强的动态规划能力,比如躲避拥堵、路线调整等,而自动驾驶需要更加实时性的路径规划能力。行为预测能力成为智能决策技术的重大短板。
从文中表述来看,“静态规划”和“动态规划”是指规划是不是实时的,即是不是每个运行周期都在进行规划,或者说是不是在复用之前规划好的轨迹。
决策与规划模块可以进一步细分为决策步骤和规划步骤,其中决策步骤负责生成离散型决定,规划步骤负责生成时空连续的局部轨迹。虽然决策步骤只需在有限种事件中实现离散型选择,但是实际的决策方法按照其数据类型分为离散型与连续性。以避障为例,离散型决策方法输出的是分别从哪侧绕行的布尔型数据,而连续型决策方法输出的是体现绕行方法的粗糙轨迹/路径。离散型决策方法主要包括马尔可夫系列方法、有限状态机以及机器学习方法等。连续型决策方法与规划方法的界限非常模糊,因为经过决策得到的粗糙轨迹\路径在对精度要求不高的情况下可以作为结果直接输出。将智能网联汽车按照应用场景可以分为四类:单车在低速非结构化场景中的规划、多车在低速非结构化场景中的规划、单车在结构化道路场景中的规划和多车在结构化道路场景中的规划。
1. 单车在低速非结构化场景中的规划
在非结构化场景中,汽车行驶速度不高,此时车辆运动学属性和带有Ackerman转向的轮式机器人相似,因此相应的规划方法的发展主要源于机器人学科。与高速结构化道路场景相比,低速非结构化场景以泊车场景为典型代表,往往体现出杂乱、狭窄的特点,且场景中障碍物的运动模态难以准确跟踪或者预测。此外,在低速非结构化场景中,车辆还可以倒退,也导致了该场景的规划方法较之结构化道路上更加复杂。
适用的成熟的规划方法方法可以分为采用搜索(sample-and-search-based)方法以及最优控制(optimal control-based)方法两大类。
采样搜索方法按照采用方式分为状态空间采样和控制空间采样。状态空间采样以A*和state-lattice,以及在两者基础上发展的采样搜索方法。在车辆规划问题中,控制空间的维度远低于状态空间,因此在控制空间采样搜索的计算效率高,也天然具有符合车辆运动学的优势,典型的控制空间采用方法有动态窗口法(Dynamic Window Approach,DWA)和hybrid A*。
最优控制方法特色是基于连续变量来搭建规划问题模型,因此能够更加直观、精细、统一的描述规划任务。用于描述车辆规划任务的最优控制问题由代价函数和约束条件组成,其中约束条件主要放映车辆的运动能力、规划任务的始末运动状态以及避障限制条件,代价函数是筛选优化规划结果的依据,体现对于行车过程节能性、舒适性和可靠性的追求,对最优控制问题模型进行求解即可得到车辆运动轨迹\路径。
数值求解最优控制问题的方式是将最优控制问题首先依自自变量进行离散化,从而将最优控制问题转化为非线性规划(Nonlinear Programming, NLP)问题。NLP问题继承了原始最优控制问题的难点,即问题自由度低(如控制变量只包括车速和车轮转角),但状态量众多,且碰撞躲避约束条件具有高纬度、强非线性(非凸甚至局部不可微)的特点。
常见的NLP问题解法分为严格约束法以及软约束法。严格约束方法旨在求解能够严格满足NLP问题中全部约束条件的解,常用的方法包括序贯二次规划(Sequence Quadratic Programing, SQP)方法和内点法(Interior-Point Method, IPM)。软约束方法将复杂的约束条件转化为外罚函数补入代价函数,从而构成一个至多只包含简单边界约束的非线性优化问题。由于软约束中不存在硬性约束条件,可能存在碰撞风险。共轭梯度(Conjugate Gradient,CG)和时变弹性带(Timed Elastic Band,TEB)是典型的软约束方法。
NLP问题一般都仅有局部寻优能力,可能会收敛到某个局部最优解。为了保障NLP问题的求解质量,一种自然的方法是借用全局“视野”的算法快速生成粗糙的初始解,并从该初始解的领域开展局部优化。即便有优质的初始解,NLP问题所具有的规模大、非线性强属性依然存在,需要降低NLP问题的复杂程度,更准确的讲,降低碰撞躲避相关的约束条件的处理。局部隧道化建模策略是一种典型方法,在初始解的邻域内构建一条“隧道”来彻底的将车身与周边的障碍物隔离,从而将复杂的碰撞躲避约束彻底替换为规模及非线性程度皆可掌控的“车辆必须行驶在隧道中”的约束。
在低速非结构化场景中多数进行路径规划,速度规划的任务转移到了闭环控制模块中。
2. 单车在结构化道路场景中的规划
与非结构化低速场景相比,结构化道路场景与之有显著不同。从环境中移动物体来讲,众多非协作社会车辆的行驶行为虽然具有一定可预测性,但其固有的未知性给规划带来不小的挑战,甚至需要规划以最坏的情况来看待周围态势。从车辆运动学模型来说,结构化道路一般会设计的走势平缓,导致车辆一般不会触及极限运动能力,可以使用非常简单的方法建模描述车辆的运动能力。从时效性来讲,结构化道路中车速普遍较高,为留出安全时间裕度,一般要求规划方法在几十毫秒内完成一次完整计算。
面向结构化道路的轨迹规划几乎都属于复合方法,常见的技术特征包括坐标系简化、轨迹解耦、采样、搜索及优化。
- 文章《Optimal Trajectory Generation for Dynamic Street Scenarios in a Frenet Frame》首次将Frenet坐标系概念应用到结构化道路上的轨迹规划;
- 文章《A Real-Time Motion Planner with Trajectory Optimization for Autonomous Vehicles》中的交替优化的想法启发了百度的Apollo EM算法;
- 文章《Motion planning for autonomous driving with a conformal spatiotemporal lattice》认为路径速度解耦会损失轨迹的最优性,将时间视为状态变量、基于多项式方法采样一系列时空轨迹(spatiotemporal lattice)并构造连通图,随后通过动态规划实现搜索,从而到达一次性规划轨迹的目的。
3.多车在低速非结构化场景中的协同规划
低速非结构化场景中的多车协同轨迹规划任务与现阶段自动驾驶研发初期目标相距较远,相关文献不多。现有方法分为集中式(centralized)方法和解耦式(decoupled)方法。集中式方法的核心特点是完整描述规划问题,并要求一次性求解所有车辆的行驶轨迹。解耦式方法是将完整而复杂的原始问题经过一种或者多种解耦处理,从而将原始的多车协同问题转化为一系列简单问题来分别解决。
4.多车在结构化道路场景中的协同规划
在结构化道路上,适合开展多车协同规划的场景主要包括路段上的换道任务、汇入车流任务、以及无信号灯路口通行任务,这些道路环境中的多车协同规划任务的本质是协调各车辆运动轨迹之间的潜在冲突。名义上讲,多车协同轨迹规划问题是一个高纬度的最优控制问题,将整个车辆编队视为一个大系统,将协同规划任务视为针对这一大系统的两点边值控制问题,而这个大系统的空间形态是分散的,状态也由各车辆运动状态组合而成。
一般的决策规划是指行为决策(behavior)和运动规划(motion planning),行为决策多是离散型决定。从此书的综述来看,此书着重使用最优控制的方法解决运动规划(motion planning)问题。