智能网联汽车协同决策与规划技术
文章平均质量分 79
《智能网联汽车协同决策与规划技术》学习记录。此书作者是湖南大学李柏老师,李柏老师介绍:http://grjl.hnu.edu.cn/p/19232984984B4AF50942E7C9F74E071F
小作坊钳工
钳子锉刀小铁锤
展开
-
Chapter-5 结构化道路上的多车协同决策与规划方法
多车协同轨迹决策问题的规模随着NVN_VNV的增加而迅速增长,很难设计出能够保障完备性和最优性的决策方案,仍然采用序贯决策框架来完成多车协同决策任务,其中针对单一车辆的决策需要chapter-4中的基于采样和DP搜索的方法实现。在结构化道路上,面向车辆编队协同行驶任务主要包括协同变更车道、协同避让高优先级车辆、协同通过无信号灯交叉路口以及协同汇入车流。作者认为车辆编队协同通过无信号灯交叉路口的任务足以代表上述四种协同行驶任务,并且以典型且常见的平面十字交叉路口为例构建了面向多智能网联汽车的协同轨迹.原创 2021-11-19 10:22:44 · 1626 阅读 · 0 评论 -
Chapter-4 结构化道路上的单一车辆决策与规划方法
结构化道路与非结构化道路场景的重要区别是,车辆在结构化道路中行驶时受到指引线(Reference Line)的引导,于是可以在Frenet坐标系中进行路径决策规划。1. Reference Line1.1 参考线生成参考线的生成依赖一系列航路点(waypoint)的位置信息,据此可以将参考线生成任务转化为规划一条尽量抵近各航路点的平滑路径的任务。可以建立最优化控制问题模型:J=w1∑k=1Nw(x(tfkNW)−xwk)2+w1∑k=1Nw(y(tfkNW)−ywk)2+w2∑k=1Nwω2(t原创 2021-11-18 19:15:22 · 1873 阅读 · 0 评论 -
Chapter-3 低速非结构化场景中的多车协同决策与规划方法
本章介绍了低速非结构化场景中的多车协同决策规划,作者在此章节中介绍了多车协同决策规划的难点,并给出了一种解决方案。1. 协同轨迹决策与序贯轨迹决策多车协同轨迹决策问题规模会随着车队规模的增大而迅速增大,给完备、最优解法的设计造成难以避免的苦难。在多车协同轨迹规划问题中,轨迹决策还额外决定着各智能网联汽车相互之间的绕行方式。与单一车辆的轨迹决策相比,多车协同轨迹决策不等价于各车辆轨迹决策的简单叠加。假设场景中存在非协作障碍物NobsN_{obs}Nobs个,在对单车进行轨迹决策时有2Nobs2^{N_原创 2021-11-15 10:48:08 · 1324 阅读 · 0 评论 -
Chapter-2 低速非结构化场景中的单一车辆决策与规划方法
本章介绍在低速非结构化场景中的最优化规划问题的构建和决策规划的计算流程。作者着重介绍了最优控制问题的一般形式和数值求解方法,以及使用A*求解初始值。最优化问题为连续Bolza型问题,通过离散化通过非线性求解器计算。由于初始解既可以提高非线性规划问题的求解效率,又可以避免非线性规划限于局部最优解,因此先使用全局规划方法得到粗糙的轨迹作为决策轨迹,并作为非线性规划的初始解,非线性规划的结果最为最终规划的轨迹。1. 轨迹规划命题的构建车辆的轨迹规划任务是指在车辆的起始运动状态与终止时刻运动状态之间计算出满原创 2021-11-14 21:34:42 · 1751 阅读 · 2 评论 -
Chapter-1 智能网联汽车概述
本章节是综述,介绍了《智能网联汽车协同决策与规划技术》的研究内容。智能决策技术是指融合多传感器信息、根据驾驶需求而进行的控制决策,包括行为预测、任务决策、路径规划、行为决策等多个方面,是自动驾驶汽车的大脑。从空间尺度上,路径规划可以分为全局路径规划和局部路径规划;从时间尺度上,路径规划可以分为静态规划和动态规划,传统路径规划规划已经能够实现实时性不强的动态规划能力,比如躲避拥堵、路线调整等,而自动驾驶需要更加实时性的路径规划能力。行为预测能力成为智能决策技术的重大短板。从文中表述来看,“静态规划”和原创 2021-11-13 09:09:32 · 2889 阅读 · 0 评论