Contingency Planning

Contingency Speed Planning

简单实现。

1. Control Model

  • 状态变量: x = [ s , v , a ] T x = [s, v, a]^T x=[s,v,a]T;
  • 控制变量: u = [ j ] u = [j] u=[j];
  • 运动学模型: x ˙ = A x + B u \dot{x} = A x + B u x˙=Ax+Bu;

A = [ 0 1 0 0 0 1 0 0 0 ] , B = [ 0 0 1 ] A = \left[\begin{matrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \\ \end{matrix}\right] , B = \left[\begin{matrix} 0 \\ 0 \\ 1 \\ \end{matrix}\right] A= 000100010 ,B= 001

  • 优化函数: J = J s h a r e + P n J n + P c J c J = J_{share} + P_n J_{n} + P_c J_{c} J=Jshare+PnJn+PcJc
    J s h a r e = J n = J c = w j j 2 + w s ( s − s r e f ) 2 + w v ( v − v r e f ) 2 J_{share} = J_{n} = J_{c} = w_{j} j^2 + w_{s} (s-s_{ref})^2 + w_{v} (v-v_{ref})^2 Jshare=Jn=Jc=wjj2+ws(ssref)2+wv(vvref)2
    将匀速行驶作为参考位置和速度。

  • 约束条件:

    • 起点约束;
    • 运动学约束;
    • 碰撞约束;

2. Config

config.m中为参数设置。

  • 优化问题权重;
  • 状态变量和控制变量限制;
  • 事件概率;
  • 规划时域设置;
  • 主车初始状态设置;
  • CutIn车辆设置;

3. Planner

contingency planning优化求解;

4. PlotResults

画图。

5. 运行

main.m

  • cut in概率为0:

请添加图片描述

  • cut in概率为0.1:

请添加图片描述

  • cut in概率为0.7:

请添加图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值