九宫图、四四图、五五图and so on

本文介绍了幻方的基本概念,并详细解析了奇数阶、4的倍数阶以及非4倍数偶数阶幻方的构造方法,包括九宫图、四四图和五五图的填充规则。通过特定的行走路径和对称交换,确保每行、每列及对角线上的数字和相等。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


参考自百度百科

n行n列的纵横图又称为幻方。

九宫图:

在射雕里面,黄蓉对瑛姑说的一段口诀很好记忆:“九宫之义,法以灵龟。二四为肩,六八为足,左三右七,戴九履一,五居中央。”


最简单的幻方就是平面幻方,还有立体幻方、高次幻方等。对于立体幻方、高次幻方目前世界上很多数学家仍在研究,现在只讨论平面幻方。  

对平面幻方的构造,分为三种情况:N为奇数、N为4的倍数、N为其它偶数(4n+2的形式) 

1、 N 为奇数时,最简单: 

 ⑴ 将1放在第一行中间一列; 

 ⑵ 从2开始直到n×n止各数依次按下列规则存放:  按 45°方向行走,如向右上  每一个数存放的行比前一个数的行数减1,列数加1

 ⑶ 如果行列范围超出矩阵范围,则回绕。  例如1在第1行,则2应放在最下一行,列数同样加1;  

  ⑷ 如果按上面规则确定的位置上已有数,或上一个数是第1行第n列时,  则把下一个数放在上一个数的下面。  

2、N为4的倍数时  采用对称元素交换法。 

   首先把数1到n×n按从上至下,从左到右顺序填入矩阵  然后将方阵的所有4×4子方阵中的两对角线上位置的数关于方阵中心作对  称交换,即a(i,j)与a(n+1-i,n+1-j)交换,所有其它位置上的数不变。  (或者将对角线不变,其它位置对称交换也可)  

3、 N 为其它偶数时  当n为非4倍数的偶数(即4n+2形)时:

首先把大方阵分解为4个奇数(2n+1阶)子方阵。  按上述奇数阶幻方给分解的4个子方阵对应赋值  上左子阵最小(i),下右子阵次小(i+v),下左子阵最大(i+3v),上右子阵次大(i+2v)  即4个子方阵对应元素相差v,其中v=n*n/4  四个子矩阵由小到大排列方式为

① ③  

④ ②  

然后作相应的元素交换:a(i,j)与a(i+u,j)在同一列做对应交换(j<t或j>n-t+2),  a(t-1,0)与a(t+u-1,0);a(t-1,t-1)与a(t+u-1,t-1)两对元素交换  其中u=n/2,t=(n+2)/4 上述交换使每行每列与两对角线上元素之和相等。



评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值