图算法 最小权点基

参考博客:有向图——最小点基和最小权点基

/*
最小点基和最小权点基:
    最小点基=从每个入度为0的SCC中任意选出一个点的集合
    最小权点基=从每个入度为0的SCC中选出最小权值的点的集合
*/
#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
const int INF = 0x7fffffff;
const int MAX = 1005;
int n,m;
int node[MAX];
struct Edge
{
    int from;
    int to;
    int next;
};
Edge e[2005];
int head[MAX],edgeNum;

int dfn[MAX],low[MAX],seq;
int stack[MAX],top;
bool inStack[MAX];
int belong[MAX],cnt;
int ind[MAX];
int cost[MAX];

void addEdge(int from, int to)
{
    e[edgeNum].from = from;
    e[edgeNum].to = to;
    e[edgeNum].next = head[from];
    head[from] = edgeNum++;
}

int min(int a, int b)
{
    return a<b?a:b;
}

void Tarjan(int u)
{
    dfn[u] = low[u] = seq++;
    stack[top++] = u;
    inStack[u] = true;
    for(int i = head[u]; i != -1; i = e[i].next)
    {
        int w = e[i].to;
        if(dfn[w] < 0)
        {
            Tarjan(w);
            low[u] = min(low[u],low[w]);
        }
        else if(inStack[w])
            low[u] = min(low[u],dfn[w]);
    }
    if(dfn[u] == low[u])
    {
        int v;
        cnt++;
        do
        {
            top--;
            v =stack[top];
            inStack[v] = false;
            belong[v] = cnt;    //v点所属的强连通分量的编号 
        }while(u != v);
    }
}

void solve()
{
    int i;
    for(i = 1; i <= n; i++)
        if(dfn[i] < 0)
            Tarjan(i);  //对所有连通块打一遍tarjan 
    for(i = 0; i < edgeNum; i++)    //对边表进行遍历 
    {
        if(belong[e[i].from] != belong[e[i].to])    //发现了从一个分量指向另一个分量 
            ind[belong[e[i].to]]++;     //被指向的分量入度++ 
    }
    for(i = 1; i <= n; i++) //对顶点遍历一遍 
    {
        if(cost[belong[i]] > node[i])   //每个强连通分量的最小权 
            cost[belong[i]] = node[i];
    }
    int result1=0,result2=0;
    for(i = 1; i <= cnt; i++)   //对强连通分量进行遍历 
    {
        if(ind[i]==0)   //如果这个强连通分量的入度为0 
        {
            result1++;  //最小点基的数目 
            result2 += cost[i]; // 最小权点基的数目 
        }
    }
    printf("%d %d\n",result1,result2);
}

int main()
{
    int i;
    int from,to;
    while(scanf("%d %d",&n,&m)!=EOF)
    {
        edgeNum = seq = cnt = top = 0;
        memset(head,-1,sizeof(head));
        memset(dfn,-1,sizeof(dfn));
        memset(inStack,0,sizeof(inStack));
        memset(ind,0,sizeof(ind));
        for(i = 1; i <= n; i++)
            cost[i] = INF;
        for(i = 1; i <= n; i++)
            scanf("%d",&node[i]);
        for(i = 0; i < m; i++)
        {
            scanf("%d %d",&from,&to);
            addEdge(from,to);
        }
        solve();
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值