ST-GCN 人体姿态估计模型 代码实战

本文详细介绍了如何在PyTorch中构建ST-GCN模型,一种处理时空数据的图卷积网络,通过实例展示了如何构造STGraphConvolution层和STGCN模块,以及在人体姿态估计中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

构建一个ST-GCN(Spatio-Temporal Graph Convolutional Network)模型需要结合图卷积网络(GCN)的思想,以处理时空数据。以下是一个简单的例子,演示如何使用PyTorch构建ST-GCN模型: 

import torch
import torch.nn as nn
import torch.nn.functional as F

class STGraphConvolution(nn.Module):
    def __init__(self, in_channels, out_channels, graph_matrix):
        super(STGraphConvolution, self).__init__()
        self.graph_matrix = graph_matrix
        self.weight = nn.Parameter(torch.rand(in_channels, out_channels))
        self.bias = nn.Parameter(torch.zeros(out_channels))

    def forward(self, x):
        batch_size, num_nodes, num_frames, num_features = x.size()
        x = x.view(batch_size, num_nodes * num_frames, num_features)  # Reshape for graph convolution

        adjacency_matrix = self.graph_matrix.view(num_nodes, num_nodes).to(x.device)
        adjacency_matrix = F.normalize(adjacency_matrix, p=1, dim=1)  # Normalize adjacency matrix

        x = torch.matmul(x, self.weight)
        x = torch.matmul(adjacency_matrix, x)
        x = x.view(batch_size, num_nodes, num_frames, -1) + self.bias.view(1, -1, 1, 1)

        return x

class STGCN(nn.Module):
    def __init__(self, in_channels, spatial_channels, temporal_channels, graph_matrix):
        super(STGCN, self).__init__()
        self.graph_conv1 = STGraphConvolution(in_channels, spatial_channels, graph_matrix)
        self.graph_conv2 = STGraphConvolution(spatial_channels, temporal_channels, graph_matrix)

    def forward(self, x):
        x = self.graph_conv1(x)
        x = F.relu(x)
        x = self.graph_conv2(x)
        x = F.relu(x)
        return x

# 示例用法
num_nodes = 10  # 假设有10个节点
in_channels = 3  # 输入通道数,根据你的数据而定
spatial_channels = 64  # 空间通道数,根据你的数据而定
temporal_channels = 32  # 时间通道数,根据你的数据而定

# 生成一个随机的邻接矩阵作为示例
graph_matrix = torch.randn((num_nodes, num_nodes))

model = STGCN(in_channels, spatial_channels, temporal_channels, graph_matrix)

# 随机生成输入数据
input_data = torch.randn((2, num_nodes, 5, in_channels))

# 输出结果
output = model(input_data)
print("Input shape:", input_data.shape)
print("Output shape:", output.shape)

 ST-GCN 人体姿态估计模型 代码实战

基于MMSkeleton工具包中的ST-GCN模型实现一种基于动态拓扑图的人体骨架动作识别算法python源码+使用说明.zip 改进ST-GCN模型的骨架拓扑图构建部分,使用持续学习思想动态构建人体骨架拓扑图. 将具有多关系特性的人体骨架序列数据重新编码为关系三元组, 并基于长短期记忆网络, 通过解耦合的方式学习特征嵌入. 当处理新骨架关系三元组时, 使用部分更新机制 动态构建人体骨架拓扑图, 将拓扑图送入ST-GCN进行动作识别。 运行MMSKeleton工具包参考[GETTING_STARTED.md](./doc/GETTING_STARTED.md) - 单独使用ST-GCN模型进行人体动作识别参考[START_RECOGNITION.md](./doc/START_RECOGNITION.md) - 训练基于动态拓扑图的人体骨架动作识别算法 ``` shell cd DTG-SHR python ./mmskeleton/fewrel/test_lifelong_model.py ``` - 测试基于动态拓扑图的人体骨架动作识别算法 ``` shell cd DTG-SHR python ./mmskeleton/fewrel/train_lifelong_model.py ``` - 可视化算法运行结果 基于web server搭建前端 [[参考]](https://blog.csdn.net/gzq0723/article/details/113488110) 1、前端模块:包含 'static与'templates'文件夹为界面展示相关的代码。 templates里面包含了两个html的结构文档,用来定义浏览器的显示界面。 static里面的css和img用来修饰界面。 2、服务模块: servel.py里面是web服务的一个业务逻辑。 运行算法性能可视化web服务 ``` shell cd DTG-SHR python ./server.py ``` 【备注】 1、该资源内项目代码百分百可运行,请放心下载使用!有问题请及时沟通交流。 2、适用人群:计算机相关专业(如计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网、自动化、电子信息等)在校学生、专业老师或者企业员工下载使用。 3、用途:项目具有较高的学习借鉴价值,不仅适用于小白学习入门进阶。也可作为毕设项目、课程设计、大作业、初期项目立项演示等。 4、如果基础还行,或热爱钻研,亦可在此项目代码基础上进行修改添加,实现其他不同功能。 欢迎下载!欢迎交流学习!不清楚的可以私信问我!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值