Video Google: A Text Retrieval Approach to Object Matching in Videos

本文是Josef Sivic和Andrew Zisserman在ICCV2003上的研究,探讨如何将文本检索技术应用于视频搜索。文章介绍了将场景匹配和目标检索的方法,包括视角不变性特征描述、构建视角词汇、特征量化和空间一致性。通过SIFT、MSER特征、k-means聚类和TF-IDF加权,实现了视频内容的有效检索。同时,文章还提出了停止列表和倒排文件的概念,以提高检索效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Josef Sivic and Andrew Zisserman,ICCV2003,被引用次数:3836
阅读时间:2015-04-04~05

文章的效果可以在这里看到。传说Video Google这个产品Google早在2009年就不做了,开始将精力投入到youtube中,因此现在也不能再去体验Video Google这个功能了。
文章主要研究的内容是如何将文本检索的一些方法移植到视频搜索中。文中先回顾了文本检索方法:

  1. documents采用某种分词方法,分割成一个个word;
  2. 将词根一样的词合并,如walk、walking、walks合并成walk;
  3. 消除停用词(stop word),即那些特别常见的词,如an、the;
  4. 将留下的词组织成vocabulary;
  5. 每个文本表示成一个向量,每个维度上的值为该词在文件中出现的频率;
  6. 当然,各词的值会有加权,比如采用TF-IDF加权等;
  7. 在文本检索时,通过计算词频向量,返回向量最接近的文档。

上述步骤可以将词和文档组织成inverted file,能进行高效的检索。
该思路借鉴到视频检索中,概念上的类比见下图,来源
The Visual Analogy

一、场景匹配

文章先对场景匹配进行了讨论,主要流程为:

  1. 图像特征提取,SIFT和MSER,并对特征去噪;
  2. k-means聚类,度量方式为欧式距离,对k-means多次随机初始化,最终使用误差最小的结果;
  3. 图像向量化,利用TF-IDF加权量化;
  4. 检索阶段,用cos度量query vector和all document vectors;
视角不变性特征描述
  • Shape Adapted,由椭圆中点、大小和形状决定,拉普拉斯局部极值点,这里应该是SIFT;
  • Maximally Stable,MSER区域;

文中对比了两种特征,最终发现两种特征合并效果最好。文中有去噪操作,使用Constant Velocity Dynamical model跟踪连续帧的特征区域,三帧内消失的region将被rejected,最终特征值为三帧均值,如果方差矩阵很大会rejected。

构建视角词汇

k-means聚类,文中提到两部视频48个镜头大约10k帧的图像进行visual words提取,大约200k关键点,聚类形成6k个kernel关键点,10k个kernel MSER。

特征量化

TF-IDF加权, ti=nidndlogNni

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值