快速排序重点在于分区和递归,第一趟取第一个数,然后比这个数小的分到左边,比这个数大的分到右边。
那么分区操作需要l,r和arr[l]三个参数,l表示左边开始位置,r便是右边开始位置,arr[l]l表示左边开始位置的数。
这样就便于我们接下来进行分治法以及递归操作。
其中分区方法可以利用循环比较,小的放左边,大的放右边。最为经典的方法就是挖坑填数法。
例如:
arr = [5,1,3,4,8,3,7,2]
X = 5
第一个坑为5,首先从arr从右到左找到第一个小于X=5的值为2,2放到5的位置,那么下一个坑就是2。得到
arr = [2,1,3,4,8,3,7,2]
再从左到右找到第一个大于当前坑X=5的值8,8又填到上一个坑2的位置。
arr = [2,1,3,4,8,3,7,8]
如此循环。当l=r。填入X=5到l=r的位置,
就得到了左边都小于50,右边都大于50的数组。接着递归左边和右边的部分,最后就得到排序好的数组。可以自己试试看
分区做完了,分治法递归就简单了。代码如下:
let arr = [50, 5, 8, 7, 4, 1, 22, 33, 66, 55, 2, 5, 8, 4, 8, 855, 5, 868, 5]
function quickSort(arr,l,r){
let i = l
let X = arr[i];
let j = r;
if(l<r){
while (i<j){//分区操作
for(j;j>i;j--){
if(arr[j]<X){
arr[i] = arr[j];
break;
}
}
for(i;i<j;i++){
if(arr[i]>X){
arr[j] = arr[i];
break;
}
}
}
arr[i] = X;
//递归左边和右边的部分
quickSort(arr,l,i-1);
quickSort(arr,i+1,r);
}
return arr
}
console.log(quickSort(arr,0,arr.length-1));
结果:
平均情况下:T(n)=2*T(n/2)+n; 第一次划分
=2*(2*T(n/4)+n/2)+n; 第二次划分 (=2^2*T(n/4)+2*n)
=2*(2*(2*T(n/8)+n/4)+n/2)+n; 第三次划分(=2*3*T(n/8)+3*n)
=.....................
=2^m+m*n; 第m次划分
因为2^m=n,所以等价于 = n+m*n
所以m=logn,所以T(n)=n+n*logn;