数据分析实战经验
文章平均质量分 67
记录自己在实际工作中所思所想所悟
Mr_charm
保持渴求,不要沉寂
展开
-
【数据分析实战经验】如何写游戏体验报告(以最强蜗牛为例)
说明:以下部分数据来源网络,体验报告属于个人观点,侵删PART ONE 产品概况营收能力:2020年6月23日上线,首日登顶iOS免费榜榜首,上线后连续霸榜8天iOS免费榜,畅销榜也常在前五之列,上线10天iOS流水超1.04亿,首月拿到4.3亿流水,4个月累计流水超10亿 --《伽马数据|七麦数据》MAU.原创 2021-05-11 13:51:09 · 2402 阅读 · 4 评论 -
【数据分析实战经验】0415 近期思考
1、数据中台的概念2、关系性数据库和非关系性数据库3、数据建模平台4、指标体系具体指标事怎么算的原创 2021-04-15 10:14:46 · 278 阅读 · 1 评论 -
【数据分析实战经验】一文梳理各类型玩法的分析要点 & 有效结论
入职以来,大大小小各类别的玩法都进行过分析,轮次类、PVP类、抽奖类、纯付费、2048、消消乐、大富翁等等,现在就抽空整理一下游戏内的玩法分析该怎么做,都看哪些指标,怎么得出有效结论。尽可能地得出普适性的结论,普适性的分析框架-----本文的目的日常系统功能类分析- 分析要点:1、功能使用率(广度)、解锁率(广度)、观察时间范围内功能使用频次(深度)、2、榜一奖励的获得人数占比(广度)、N次获得榜一的时间差值(把控奖励投放)- 有效结论1、功能使用率低,建议增加红点指引,改进主动触达指引.原创 2021-04-08 18:06:09 · 589 阅读 · 1 评论 -
【数据分析实战经验】0323近期思考
近期思考这个系列,是把我在工作时、上下班的地铁上,所思所想所惑之处,自问自答的写出来。虽然不知道未来的路在哪里,还是要给自己信心吧,相信自己比随波逐流更难得可贵吧About interview面试腾讯有感:作为数据分析师,理性和逻辑一定在感性之上。1. 细分垂直行业的理解,要够。—可以查询艾瑞咨询、伽马数据等等平台伽马数据Q: 举个例子:谈谈你对短视频行业的了解。A: 从用户定位、产品量级、优势/缺点、下一步发展 入手2. Q:如何搭建APP的指标体系A:一般通用项, 流量、内容、社.原创 2021-03-23 16:13:32 · 254 阅读 · 2 评论 -
【数据分析实战经验】整理半年来所学数据分析的技术栈知识点及面试关键点
life is fucking movieEXCEL篇sql篇PYTHON篇统计学篇业务相关机器学习篇大数据篇(此部分可忽略,没什么干货)面试相关原创 2021-02-28 16:13:17 · 465 阅读 · 3 评论 -
【数据分析实战经验】淘宝用户行为分析①-AARRR、RMF模型(数据量:百万级,工具mysql)
D:\> cd change\mysql-8.0.19-winx64\binD:\change\mysql-8.0.19-winx64\bin>mysql --local-infile -u root -pmysql> load data local infile'D:/xcw/work/数据面试/电商平台用户分析/UserBehavior.csv' into table taobao.xwfx -> fields terminated by ',';3835331数原创 2020-05-24 11:23:57 · 4258 阅读 · 2 评论 -
【数据分析实战经验】预测真实员工离职率(涉及模型:随机森林、逻辑回归,数据量:28211,工具:python)
1、地区划分0、未知1、华北五省二市——北京市、天津市、河北省、河南省、内蒙古自治区、山西省、山东省2、华东五省一市——上海市、江苏省、江西省、安徽省、浙江省、福建省3、东北三省——黑龙江省、吉林省、辽宁省4、西北五省——陕西省、甘肃省、宁夏回族自治区、青海省、新疆维吾尔自治区5、西南四省一市——四川省、重庆市、贵州省、云南省、西藏自治区6、华南五省——湖北省、湖南省、广东省、广西省、海南省7、港澳台及其他数据清洗异常值共计25人,删去...原创 2020-08-09 23:12:38 · 5293 阅读 · 20 评论 -
【数据分析实战经验】职工离职情况分析①(python+powerbi)
公司离职职工浅析前言:员工离职,似乎已经成为每一家企业都要面对的问题,特别是优秀人才离职的问题会给公司带来损失。本文主要是对我的公司(进行离职人员的分析,后期希望通过建立离职模型,提前找出预测结果显示要离职的员工,提出挽留建议。截止3月31日,目前在职员工共计20778人,签订合同后离职的人数是7263人,整体离职率是在25.90%。其中福州分公司离职率最高,达到49.8%,杭州次之,在27....原创 2020-04-27 22:33:26 · 4909 阅读 · 9 评论 -
【数据分析实战经验】航空公司客户价值分析 LRMFC 模型(K-means聚类,工具python)
这两天在看张良均、王路等人出版的书《python数据分析与挖掘实战》,前面整理了一篇笔记,现在就实战一下吧。数据量:62988,共有44个客户属性,其中包含了会员卡号、入会时间、性别、年龄、会员卡级别、在观测窗口内的飞行公里数、飞行时间等第一步:数据探索拿到数据集,先进行整体上的观察import pandas as pdimport numpy as npdf = pd.read_csv( 'air_data.csv', encoding = 'utf-8') #读取原始数据,指定UTF-8编原创 2020-05-31 19:22:23 · 6188 阅读 · 51 评论 -
【数据分析实战经验】0118近期思考
埋点是什么,记录用户行为,返回关键数据的点位。埋点案分为三块,业务需求及分析需求,中间表,点位及携带信息写埋点的流程,先想好主次需求,需求对应的维度及指标原创 2021-01-13 19:03:02 · 207 阅读 · 0 评论 -
【数据分析实战经验】1216近期思考
当地时间,本地时间原创 2020-12-19 15:41:03 · 376 阅读 · 0 评论 -
【数据分析实战经验】利用Python对数据进行做区间判断,打标签
背景同事在处理excel数据时,需要人工根据充值金额,进行用户的付费等级备注。举个例子:玩家充值满19.99元,为V1玩家,充值满49.99元,为V2玩家。。。。以此类推但,由于数据量过大,excel操作起来不方便,需要用到python。步骤解答1、开头是常规字段,不过用到文件的写入、保存需要用到path类#-*-coding:utf-8-*-import pandas as pdimport numpy as npfrom pathlib import Path as path原创 2020-10-10 17:02:45 · 2007 阅读 · 0 评论 -
【数据分析实战经验】利用Python找出购买次数第10次对应的时间
背景如题:工作中需要根据数值模拟进行判断,拥有玩家每次购买的时间,及角色id,评估玩家购买10次所需要的时长。处理过程1、读取数据import pandas as pddf=pd.read_excel(r'C:\Users\ADMIN\Desktop\1.xlsx')df.head()2、因为第一列角色存在id多次购买,先去重uni_roleid = df['RoleId'].unique().tolist()uni_roleid3、去重后,针对玩家id进行循环判断,利用len(原创 2020-10-12 16:39:37 · 528 阅读 · 0 评论 -
【数据分析实战经验】入职5-12周 技术小结
一、EXCEL宏:简单来说,Excel 宏指的是,使用 Excel 内置的编程语言 VBA (Visual Basic for Applications)写的,能在 Excel 环境里运行的一系列操作指令。我们在 Excel里手动进行的几乎所有操作,宏(VBA)也都可以操作。主要场景:用来解决大量多表重复操作主要步骤:开启宏-设置宏的安全性-判断使不使用相对引用-选择起始位置或区域-录制宏-设置快捷键-选择待使用的位置或区域-使用宏怎么判断使不使用相对引用:参考这个文章。https://www.原创 2020-11-22 17:16:04 · 620 阅读 · 0 评论 -
【数据分析实战经验】入职1-4周 如何做好一份分析报告
分析的本质分析的目的是解决实际生产中我们发现的现象,追溯其背后产生的原因,提出针对性建议,并不断反复验证的过程。其实这句话看起来简单,但实际做的时候大多数人还仅仅是停留在描述数据表现的现象这个层面,甚至一个简练的描述现象观点都没有很好的总结出来。这个没有其他办法,多分析多总结才会慢慢变好。接下来我就根据自己的理解,讲讲如何完整地做好一个分析任务。搭好分析框架,提前预想结果明确分析的目的是什么分析的对象可以是活动、系统、玩法、群体、营收等等。当接到一个分析任务时,先明确分析的目的是什么,是验原创 2020-11-15 10:02:35 · 399 阅读 · 0 评论