【数据分析实战经验】利用Python找出购买次数第10次对应的时间

这篇博客分享了一次数据分析实战经验,通过Python处理数据,找出玩家完成第10次购买所需的具体时间。首先,从数据中去重,然后针对每个玩家ID进行循环判断,利用len()函数确定购买次数,最终整理并导出结果。核心技巧在于运用循环和切片操作。
摘要由CSDN通过智能技术生成

背景

如题:工作中需要根据数值模拟进行判断,拥有玩家每次购买的时间,及角色id,评估玩家购买10次所需要的时长。

处理过程

1、读取数据

import pandas as pd
df=pd.read_excel(r'C:\Users\ADMIN\Desktop\1.xlsx')
df.head()

在这里插入图片描述
2、因为第一列角色存在id多次购买,先去重

uni_roleid = df['RoleId'].unique().tolist()
uni_roleid

在这里插入图片描述
3、去重后,针对玩家id进行循环判断,利用len()函数进行二次判断

time_list=[]
for i in uni_roleid:
    role_time = df[df['RoleId']==i].values.tolist()#输出id和对应的时间
    if len(role_time)>=10:
        time_list.append(role_time[9])#取第10次的时间
 print(time_list)

4、整理并导出

df_res =
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值