机器学习
文章平均质量分 74
Mr_Nobody17
这个作者很懒,什么都没留下…
展开
-
【一起来啃西瓜书】——支持向量机
目录1.线性可分定义2.问题描述3.优化问题4.线性不可分5.低维到高维的映射6.核函数(kernal Function)7.原问题和对偶问题8.支持向量机原问题转换为对偶问题9.算法总体流程10.SVM应用——国际象棋兵王问题1)规则介绍2)参数设置3)程序设计4)性能度量11.SVM处理多类问题1.线性可分定义算法创始人:Vladimir Vapnik线性可分:Linear Separable二维存在一条直线将⭕和×分开原创 2022-02-08 17:00:42 · 1818 阅读 · 0 评论 -
【一起来啃西瓜书】——线性模型
1.基本形式2.线性回归1)输入一维,输出一维2)输入多维,输出一维3)输入多维,输出多维4)广义线性模型3.对数几率回归4.线性判别分析5.多分类学习6.类别不平衡问题# 导入包from sklearn.datasets import make_classificationfrom collections import Counterfrom imblearn.over_sampling import RandomOverSampler# 生成样本集,原创 2022-01-13 15:40:48 · 483 阅读 · 0 评论 -
【一起来啃西瓜书】——模型评估与选择
1.经验误差与过拟合1)经验误差与泛化误差a.错误率:测试样本中分类错误的样本数占总样本数的比例。E=bm×100%E = \frac bm ×100 \%E=mb×100%b.精度:测试样本中分类正确的样本数占总样本数的比例。Acc=km×100%=1−bm×100%Acc = \frac km ×100 \% = 1- \frac bm ×100 \%Acc=mk×100%=1−mb×100%错误率 + 精度 = 1错误率与精度常用于评估分类模型的泛化能力例:假设我们有原创 2022-01-05 08:17:03 · 1462 阅读 · 0 评论 -
【一起来啃西瓜书】——绪论
一起来啃西瓜书原创 2021-12-30 19:05:55 · 1045 阅读 · 0 评论 -
朴素贝叶斯
朴素贝叶斯原创 2021-12-29 16:42:06 · 1303 阅读 · 2 评论