人工智能神经网络模型,人工智能模拟神经元

本文探讨了人工神经网络的知识表示形式、推理机制和基础数学模型,源自大脑的非线性、非局限性和非常定性特征。深度学习中,人工神经网络作为一种非线性、自适应的信息处理系统,模仿人脑神经系统处理和记忆信息的方式。人工神经网络在模式识别、智能机器人等领域表现出优秀的智能特性,具有非线性、非局限性、自适应性和非凸性四个基本特征。其在物流合作伙伴选择、供应链管理等实际问题中得到应用,能够实现定性与定量分析的结合。
摘要由CSDN通过智能技术生成

1、人工神经网络的知识表示形式和推理机制

神经网络有多种分类方式,例如,按网络性能可分为连续型与离散型网络,确定型与随机型网络:按网络拓扑结构可分为前向神经网络与反馈神经网络。本章土要简介前向神经网络、反馈神经网络和自组织特征映射神经网络。

前向神经网络是数据挖掘中广为应用的一种网络,其原理或算法也是很多神经网络模型的基础。径向基函数神经网络就是一种前向型神经网络。Hopfield神经网络是反馈网络的代表。Hvpfi}ld网络的原型是一个非线性动力学系统,目前,已经在联想记忆和优化计算中得到成功应用。

基本特征

非线性关系是自然界的普遍特性。大脑的智慧就是一种非线性现象。人工神经元处于激活或抑制二种不同的状态,这种行为在数学上表现为一种非线性关系。具有阈值的神经元构成的网络具有更好的性能,可以提高容错性和存储容量。

一个神经网络通常由多个神经元广泛连接而成。一个系统的整体行为不仅取决于单个神经元的特征,而且可能主要由单元之间的相互作用、相互连接所决定。通过单元之间的大量连接模拟大脑的非局限性。联想记忆是非局限性的典型例子。

以上内容参考:

谷歌人工智能写作项目:小发猫

2、深度学习中什么是人工神经网络?

人工神经网络(Artificial Neural Network,即ANN &#

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值