人工神经网络应用举例,人工神经网络实际应用

本文介绍了人工神经网络的基本原理和工作方式,以手写字符识别为例展示了学习过程。神经网络通过分布式存储和并行处理实现非线性函数逼近,具有自学习和自适应能力。在供应链管理中,神经网络用于合作伙伴的选择和评价,处理定性和定量指标。文章还提到了学习神经网络所需的基础知识,并提供了相关资源链接。
摘要由CSDN通过智能技术生成

神经网络算法实例说明有哪些?

在网络模型与算法研究的基础上,利用人工神经网络组成实际的应用系统,例如,完成某种信号处理或模式识别的功能、构作专家系统、制成机器人、复杂系统控制等等。

纵观当代新兴科学技术的发展历史,人类在征服宇宙空间、基本粒子,生命起源等科学技术领域的进程中历经了崎岖不平的道路。我们也会看到,探索人脑功能和神经网络的研究将伴随着重重困难的克服而日新月异。

谷歌人工智能写作项目:小发猫

人工神经网络的应用

人工神经网络(ArtificialNeuralNetwork,简称ANN),以数学模型模拟神经元活动,是基于模仿大脑神经网络结构和功能而建立的一种信息处理系统人工神经网络算法,人工神经网络算法代码

人工神经网络具有自学习、自组织、自适应以及很强的非线性函数逼近能力,拥有强大的容错性。它可以实现仿真、预测以及模糊控制等功能。是处理非线性系统的有力工具。

它是物流合作伙伴选择方法中合作伙伴选择的神经网络算法的另一种名称。

它是20世界80年代后迅速发展的一门新兴学科,ANN可以模拟人脑的某些智能行为,如知觉,灵感和形象思维等,具有自学性,自适应和非线性动态处理等特征。

将ANN应用于供应链管理(SCM)环境下合作合办的综合评价选择,意在建立更加接近于人类思维模式的定性与定量相结合的综合评价选择模型。

通过对给定样本模式的学习,获取评价专家的知识,经验,主管判断及对目标重要性的倾向,当对合作伙伴作出综合评价时,该方法可再现评价专家的经验,知识和直觉思维,从而实现了定性分析与定量分析的有效结合,也可以较好的保证合作伙伴综合评价结果的客观性。

在选定评价指标组合的基础上,对评价指标作出评价,得到评价值后,因各指标间没有统一的度量标准,难以进行直接的分析和比较,也不利于输入神经网络计算。

因此,在用神经网络进行综合评价之前,应首先将输入的评价值通过隶属函数的作用转换为(0,1]之间的值,即对评价值进行标准无纲量化,并作为神经网络的输入,以使ANN可以处理定量和定性指标。

请采纳答案,支持我一下。

想要学习人工神经网络,需要什么样的基础知识?

人工神经网络理论百度网盘下载:链接: 提取码:rxlc简介:本书是人工神经网络理论的入门书籍。全书共分十章。

第一章主要阐述人工神经网络理论的产生及发展历史、理论特点和研究方向;第二章至第九章介绍人工神经网络理论中比较成熟且常用的几种主要网络结构、算法和应用途径;第十章用较多篇幅介绍了人工神经网络理论在各个领域的应用实例。

请介绍一下人工神经网络,和应用 5

一.一些基本常识和原理[什么叫神经网络?]人的思维有逻辑性和直观性两种不同的基本方式。

逻辑性的思维是指根据逻辑规则进行推理的过程;它先将信息化成概念,并用符号表示,然后,根据符号运算按串行模式进行逻辑推理;这一过程可以写成串行的指令,让计算机执行。

然而,直观性的思维是将分布式存储的信息综合起来,结果是忽然间产生想法或解决问题的办法。

这种思维方式的根本之点在于以下两点:1.信息是通过神经元上的兴奋模式分布储在网络上;2.信息处理是通过神经元之间同时相互作用的动态过程来完成的。人工神经网络就是模拟人思维的第二种方式。

这是一个非线性动力学系统,其特色在于信息的分布式存储和并行协同处理。虽然单个神经元的结构极其简单,功能有限,但大量神经元构成的网络系统所能实现的行为却是极其丰富多彩的。

[人工神经网络的工作原理]人工神经网络首先要以一定的学习准则进行学习,然后才能工作。

现以人工神经网络对手写“A”、“B”两个字母的识别为例进行说明,规定当“A”输入网络时,应该输出“1”,而当输入为“B”时,输出为“0”。

所以网络学习的准则应该是:如果网络作出错误的的判决,则通过网络的学习,应使得网络减少下次犯同样错误的可能性。

首先,给网络的各连接权值赋予(0,1)区间内的随机值,将“A”所对应的图象模式输入给网络,网络将输入模式加权求和、与门限比较、再进行非线性运算,得到网络的输出。

在此情况下,网络输出为“1”和“0”的概率各为50%,也就是说是完全随机的。这时如果输出为“1”(结果正确),则使连接权值增大,以便使网络再次遇到“A”模式输入时,仍然能作出正确的判断。

如果输出为“0”(即结果错误),则把网络连接权值朝着减小综合输入加权值的方向调整,其目的在于使网络下次再遇到“A”模式输入时,减小犯同样错误的可能性。

如此操作调整,当给网络轮番输入若干个手写字母“A”、“B”后,经过网络按以上学习方法进行若干次学习后,网络判断的正确率将大大提高。

这说明网络对这两个模式的学习已经获得了成功,它已将这两个模式分布地记忆在网络的各个连接权值上。当网络再次遇到其中任何一个模式时,能够作出迅速、准确的判断和识别。

一般说来,网络中所含的神经元个数越多,则它能记忆、识别的模式也就越多。

=================================================关于一个神经网络模拟程序的下载人工神经网络实验系统(BP网络)V1.0Beta作者:沈琦作者关于此程序的说明:从输出结果可以看到,前3条"学习"指令,使"输出"神经元收敛到了值0.515974。

而后3条"学习"指令,其收敛到了值0.520051。再看看处理4和11的指令结果P*Out1:0.520051看到了吗?"大脑"识别出了4和11是属于第二类的!

怎么样?很神奇吧?再打show指令看看吧!"神经网络"已经形成了!你可以自己任意的设"模式"让这个"大脑"学习分辩哦!只要样本数据量充分(可含有误差的样本),如果能够在out数据上收敛地话,那它就能分辨地很准哦!有时不是绝对精确,因为它具有"模糊处理"的特性.看Process输出的值接近哪个Learning的值就是"大脑"作出的"模糊性"判别!=================================================人工神经网络论坛(旧版,枫舞推荐)国际神经网络学会(INNS)(英文)欧洲神经网络学会(ENNS)(英文)亚太神经网络学会(APNNA)(英文)日本神经网络学会(JNNS)(日文)国际电气工程师协会神经网络分会研学论坛神经网络;sty=1&age=0人工智能研究者俱乐部2nsoft人工神经网络中文站=================================================推荐部分书籍:人工神经网络技术入门讲稿(PDF)神经网络FAQ(英文)数字神经网络系统(电子图书)神经网络导论(英文)===============================================一份很有参考价值的讲座是Powerpoint文件,比较大,如果网速不够最好用鼠标右键下载另存.=========================================================已经努力的在给你提供条件资源哦~~。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值