python神经网络编程 豆瓣,python神经网络库 keras

学Python毕业后可以做什么?

Python简单易学,入门门槛低,而且可以跨平台使用,一处编写处处运行,因此从开发者的视角来说非常高效。

其稳定性和安全性也在大型实际项目上得到了验证,一些著名的网站或客户端应用都是用Python来实现的,例如YouTube,豆瓣,BitTorrent和Dropbox等。

Python的应用领域1.Web开发Python可以快速创建Web应用,这得益于其强大的基础库和丰富的网络框架,例如著名的Django,Flask,Tonardo,等。

通过使用这些Web框架,我们开发Web网站会更加安全与便利,在天下武功唯快不破的时代,何乐而不为呢。2.游戏开发Python也能用来开发互动性的游戏。

PySoy可以提供3D引擎,而PyGame则可以提供了开发一款游戏的基本功能和库支持。

例如Civilization-IV,Disney’sToontownOnline,VegaStrike等游戏都是通过Python来开发。

在网络游戏开发中,Python也有很多应用,相比Lua而言,Python有更高阶的抽象能力,可以用更少的代码描述游戏业务逻辑。

3.机器学习与人工智能机器学习和人工智能是当下最热的话题,Python在人工智能领域内的机器学习、神经网络、深度学习等方面,都是主流的编程语言。

原因至少有以下三点:·目前世界上优秀的人工智能学习框架,比如Google的TransorFlow(神经网络框架)、FaceBook的PyTorch(神经网络框架)以及开源社区的Karas神经网络库等,都是用Python实现的;·微软的CNTK(认知工具包)也完全支持Python,并且该公司开发的VSCode,也已经把Python作为第一级语言进行支持。

·Python擅长进行科学计算和数据分析,支持各种数学运算,可以绘制出更高质量的2D和3D图像。如今AI时代的来临,Python作为AI时代头牌语言的位置,已经确定。

4.科学计算与数据可视化自1997年,NASA就大量使用Python进行各种复杂的科学运算,为Python积累了丰富的科学运算库。

并且,和其它解释型语言(如shell、js、PHP)相比,Python在数据分析、可视化方面有相当完善和优秀的库,例如NumPy、SciPy、Matplotlib、pandas等,这可以满足Python开发者高效编写科学计算程序。

同时基于Matplotlib,Seaborn,又能方便绘制图形,能让数据可以更直观的表现。5.桌面软件Python可用于桌面应用程序编程。

它提供了可用于开发用户界面的库,如Tkinter,wxPython和pyQT等,可用于在多个平台上创建桌面应用程序。

6.网络爬虫在爬虫领域,Python非常强大,将网络一切数据作为资源,通过自动化程序进行有针对性的数据采集以及处理。

现在已经有非常成熟的爬虫工具和框架,如Requests,Scrapy,pySpider等。可以利用它们高效的构建网络爬虫,获取需要的数据。

7.云计算Python是从事云计算工作必需掌握的一门编程语言,目前很火的云计算框架OpenStack就是由Python开发的,如果想要深入学习并进行二次开发,就需要具备Python的技能。

8.金融分析与量化交易Python拥有大量的金融计算库,并且可以提供与C++,Java等语言的接口以实现高效率的分析,成为金融领域快速开发和应用的一种关键语言,由于它是开源的,降低了金融计算的成本,而且还通过广泛的社交网络提供大量的应用实例,极大的缩短了金融量化分析的学习路径。

9.物联网Python在嵌入式领域的应用使得Python语言打通了整个物联网开发体系,从设备、网络、平台到分析和应用,整个物联网开发体系都可以采用Python语言来完成功能开发,在5G通信的推动下,未来Python在物联网领域的应用前景也非常值得期待。

10.自动化运维Python是一门综合性的语言,能满足绝大部分自动化运维需求,前端和后端都可以做,同时大数据时代的到来和人工智能的快速发展,自动化运维必将替代人工运维。

而Python语言因其强大的第三方程序库,如Fabric,Ansible和Saltstack等,在系统运维方面有着非常大的优势。

Python的就业前景随着Python的技术的流行,Python为人们的工作与生活上带来了很多的便捷,因为Python简单,学起来快,也是不少新手程序员入门的首选语言。

新手们比较关心的就是Python的发展前景与方向。本文,就从三个方面,详细的分析Python的发展前景。1、从自身特性看Python发展Python自身强大的优势决定其不可限量的发展前景。

Python作为一种通用语言,几乎可以用在任何领域和场合,角色几乎是无限的。Python具有简单、易学、免费、开源、可移植、可扩展、可嵌入、面向对象等优点,它的面向对象甚至比java和更彻底。

它是一种很灵活的语言,能帮你轻松完成编程工作。强大的类库支持,使编写文件处理、正则表达式、网络连接等程序变得相当容易。

能运行在多种计算机平台和操作系统中,如unix、windows、MacOS、OS/2等等,并可作为一种原型开发语言,加快大型程序的开发速度。

2、从企业应用来看Python发展Python被广泛的用在Web开发、运维自动化、测试自动化、数据挖掘等多个行业和领域。

一项专业调查显示,75%的受访者将Python视为他们的主要开发语言,反之,其他25%受访者则将其视为辅助开发语言。

将Python作为主要开发语言的开发者数量逐年递增,这表明Python正在成为越来越多开发者的开发语言选择。

目前,国内不少大企业都已经使用Python如豆瓣、搜狐、金山、腾讯、盛大、网易、百度、阿里、淘宝、热酷、土豆、新浪、果壳等;国外的谷歌、NASA、YouTube、Facebook、工业光魔、红帽等都在应用Python完成各种各样的任务。

3、从市场需求与薪资看Python发展从最新Python招聘岗位需求来看,Python工程师的岗位需求量巨大,并且岗位需求量还在呈现上涨的趋势。

全国Python岗位需求量接近10W个,北京岗位需求量居首位为20890个,占比21.17%;上海Python工程师岗位需求量居第二位为12843个,占比13.02%;其次是深圳、杭州、广州等一线城市合计占比16.53%,下图为全国主要城市Python工程师岗位需求量:Python人才需求逐年增加,从市场整体需求来看,Python在招聘市场上的流行程度也是在逐步上升的,工资水平也是水涨船高。

据统计Python平均薪资水平在12K,随着经验的提升,薪资也是逐年增长。

目前初级Python工程师薪资待遇就达10-15K,而随着开发年限的增加,Python开发者薪资呈直线上升的变化趋势,工作8年的Python薪资攀升至25K左右。

4、Python岗位有哪些呢?主要的岗位有这些:Python全栈开发工程师(10k-20K)Python运维开发工程师(15k-20K)Python高级开发工程师(15k-30K)Python大数据工程师(15K-30K)Python机器学习工程师(15k-30K)Python架构师(20k-40k)学习Python的程序员,除去Python开发工程师、Python人工智能工程师、Python自动化测试外,也能够朝着Python游戏开发工程师、数据分析工程师、Linux运维工程师等方向发展,发展方向较为多元化。

随着Python的流行,带动的是它的普及以及市场需求量,所以现在学习Python是个不错的时机。

谷歌人工智能写作项目:小发猫

怎样用python构建一个卷积神经网络

用keras框架较为方便首先安装anaconda,然后通过pip安装keras以下转自wphh的博客人工神经网络增量数据,人工智能相关数据

#coding:utf-8'''    GPU run command:        THEANO_FLAGS=mode=FAST_RUN,device=gpu,floatX=float32 python     CPU run command:        python 2016.06.06更新:这份代码是keras开发初期写的,当时keras还没有现在这么流行,文档也还没那么丰富,所以我当时写了一些简单的教程。

现在keras的API也发生了一些的变化,建议及推荐直接上看更加详细的教程。

'''#导入各种用到的模块组件from __future__ import absolute_importfrom __future__ import print_functionfrom keras.preprocessing.image import ImageDataGeneratorfrom keras.models import Sequentialfrom  import Dense, Dropout, Activation, Flattenfrom keras.layers.advanced_activations import PReLUfrom keras.layers.convolutional import Convolution2D, MaxPooling2Dfrom keras.optimizers import SGD, Adadelta, Adagradfrom keras.utils import np_utils, generic_utilsfrom six.moves import rangefrom data import load_dataimport randomimport numpy as np(1024)  # for reproducibility#加载数据data, label = load_data()#打乱数据index = [i for i in range(len(data))]random.shuffle(index)data = data[index]label = label[index]print(data.shape[0], ' samples')#label为0~9共10个类别,keras要求格式为binary class matrices,转化一下,直接调用keras提供的这个函数label = np_utils.to_categorical(label, 10)################开始建立CNN模型################生成一个modelmodel = Sequential()#第一个卷积层,4个卷积核,每个卷积核大小5*5。

1表示输入的图片的通道,灰度图为1通道。

#border_mode可以是valid或者full,具体看这里说明:.conv2d#激活函数用tanh#你还可以在(Activation('tanh'))后加上dropout的技巧: (Dropout(0.5))(Convolution2D(4, 5, 5, border_mode='valid',input_shape=(1,28,28))) (Activation('tanh'))#第二个卷积层,8个卷积核,每个卷积核大小3*3。

4表示输入的特征图个数,等于上一层的卷积核个数#激活函数用tanh#采用maxpooling,poolsize为(2,2)(Convolution2D(8, 3, 3, border_mode='valid'))(Activation('tanh'))(MaxPooling2D(pool_size=(2, 2)))#第三个卷积层,16个卷积核,每个卷积核大小3*3#激活函数用tanh#采用maxpooling,poolsize为(2,2)(Convolution2D(16, 3, 3, border_mode='valid')) (Activation('relu'))(MaxPooling2D(pool_size=(2, 2)))#全连接层,先将前一层输出的二维特征图flatten为一维的。

#Dense就是隐藏层。16就是上一层输出的特征图个数。

4是根据每个卷积层计算出来的:(28-5+1)得到24,(24-3+1)/2得到11,(11-3+1)/2得到4#全连接有128个神经元节点,初始化方式为normal(Flatten())(Dense(128, init='normal'))(Activation('tanh'))#Softmax分类,输出是10类别(Dense(10, init='normal'))(Activation('softmax'))##############开始训练模型###############使用SGD + momentum#model.compile里的参数loss就是损失函数(目标函数)sgd = SGD(lr=0.05, decay=1e-6, momentum=0.9, nesterov=True)model.compile(loss='categorical_crossentropy', optimizer=sgd,metrics=["accuracy"])#调用fit方法,就是一个训练过程. 训练的epoch数设为10,batch_size为100.#数据经过随机打乱shuffle=True。

verbose=1,训练过程中输出的信息,0、1、2三种方式都可以,无关紧要。show_accuracy=True,训练时每一个epoch都输出accuracy。

#validation_split=0.2,将20%的数据作为验证集。

(data, label, batch_size=100, nb_epoch=10,shuffle=True,verbose=1,validation_split=0.2)"""#使用data augmentation的方法#一些参数和调用的方法,请看文档datagen = ImageDataGenerator(        featurewise_center=True, # set input mean to 0 over the dataset        samplewise_center=False, # set each sample mean to 0        featurewise_std_normalization=True, # divide inputs by std of the dataset        samplewise_std_normalization=False, # divide each input by its std        zca_whitening=False, # apply ZCA whitening        rotation_range=20, # randomly rotate images in the range (degrees, 0 to 180)        width_shift_range=0.2, # randomly shift images horizontally (fraction of total width)        height_shift_range=0.2, # randomly shift images vertically (fraction of total height)        horizontal_flip=True, # randomly flip images        vertical_flip=False) # randomly flip images# compute quantities required for featurewise normalization # (std, mean, and principal components if ZCA whitening is applied)(data)for e in range(nb_epoch):    print('-'*40)    print('Epoch', e)    print('-'*40)    print("Training...")    # batch train with realtime data augmentation    progbar = generic_utils.Progbar(data.shape[0])    for X_batch, Y_batch in (data, label):        loss,accuracy = model.train(X_batch, Y_batch,accuracy=True)        (X_batch.shape[0], values=[("train loss", loss),("accuracy:", accuracy)] )"""。

python 有哪些神经网络的包

1.Scikit-learnScikit-learn是基于Scipy为机器学习建造的的一个Python模块,他的特色就是多样化的分类,回归和聚类的算法包括支持向量机,逻辑回归,朴素贝叶斯分类器,随机森林,GradientBoosting,聚类算法和DBSCAN。

python简单神经网络的实现 求问这儿是怎么实现syn0均值为0的,以及我在Python3中运行发现l1的shape也不对

np.random.random返回[0,1)区间的随机数,2*np.random.random -1返回[-1,1)的随机数,具体可以看网页链接看这个神经网络结构应该就输入输出两层,l1的shape为(l0,syn0),[4*3],[3*1]的矩阵相乘得到[4*1]的矩阵,y=np.array([[0,1,1,0]]).T,y也是[4*1]的矩阵。

如何用 Python 构建神经网络择时模型

importmathimportrandom(0)defrand(a,b):#随机函数return(b-a)*random.random()+adefmake_matrix(m,n,fill=0.0):#创建一个指定大小的矩阵mat=[]foriinrange(m):mat.append([fill]*n)returnmat#定义sigmoid函数和它的导数defsigmoid(x):return1.0/((-x))defsigmoid_derivate(x):returnx*(1-x)#sigmoid函数的导数classBPNeuralNetwork:def__init__(self):#初始化变量self.input_n=0self.hidden_n=0self.output_n=0self.input_cells=[]self.hidden_cells=[]self.output_cells=[]self.input_weights=[]self.output_weights=[]self.input_correction=[]self.output_correction=[]#三个列表维护:输入层,隐含层,输出层神经元defsetup(self,ni,nh,no):self.input_n=ni+1#输入层+偏置项self.hidden_n=nh#隐含层self.output_n=no#输出层#初始化神经元self.input_cells=[1.0]*self.input_nself.hidden_cells=[1.0]*self.hidden_nself.output_cells=[1.0]*self.output_n#初始化连接边的边权self.input_weights=make_matrix(self.input_n,self.hidden_n)#邻接矩阵存边权:输入层->隐藏层self.output_weights=make_matrix(self.hidden_n,self.output_n)#邻接矩阵存边权:隐藏层->输出层#随机初始化边权:为了反向传导做准备--->随机初始化的目的是使对称失效foriinrange(self.input_n):forhinrange(self.hidden_n):self.input_weights[i][h]=rand(-0.2,0.2)#由输入层第i个元素到隐藏层第j个元素的边权为随机值forhinrange(self.hidden_n):foroinrange(self.output_n):self.output_weights[h][o]=rand(-2.0,2.0)#由隐藏层第i个元素到输出层第j个元素的边权为随机值#保存校正矩阵,为了以后误差做调整self.input_correction=make_matrix(self.input_n,self.hidden_n)self.output_correction=make_matrix(self.hidden_n,self.output_n)#输出预测值defpredict(self,inputs):#对输入层进行操作转化样本foriinrange(self.input_n-1):self.input_cells[i]=inputs[i]#n个样本从0~n-1#计算隐藏层的输出,每个节点最终的输出值就是权值*节点值的加权和forjinrange(self.hidden_n):total=0.0foriinrange(self.input_n):total+=self.input_cells[i]*self.input_weights[i][j]#此处为何是先i再j,以隐含层节点做大循环,输入样本为小循环,是为了每一个隐藏节点计算一个输出值,传输到下一层self.hidden_cells[j]=sigmoid(total)#此节点的输出是前一层所有输入点和到该点之间的权值加权和forkinrange(self.output_n):total=0.0forjinrange(self.hidden_n):total+=self.hidden_cells[j]*self.output_weights[j][k]self.output_cells[k]=sigmoid(total)#获取输出层每个元素的值returnself.output_cells[:]#最后输出层的结果返回#反向传播算法:调用预测函数,根据反向传播获取权重后前向预测,将结果与实际结果返回比较误差defback_propagate(self,case,label,learn,correct):#对输入样本做预测self.predict(case)#对实例进行预测output_deltas=[0.0]*self.output_n#初始化矩阵foroinrange(self.output_n):error=label[o]-self.output_cells[o]#正确结果和预测结果的误差:0,1,-1output_deltas[o]=sigmoid_derivate(self.output_cells[o])*error#误差稳定在0~1内#隐含层误差hidden_deltas=[0.0]*self.hidden_nforhinrange(self.hidden_n):error=0.0foroinrange(self.output_n):error+=output_deltas[o]*self.output_weights[h][o]hidden_deltas[h]=sigmoid_derivate(self.hidden_cells[h])*error#反向传播算法求W#更新隐藏层->输出权重forhinrange(self.hidden_n):foroinrange(self.output_n):change=output_deltas[o]*self.hidden_cells[h]#调整权重:上一层每个节点的权重学习*变化+矫正率self.output_weights[h][o]+=learn*change+correct*self.output_correction[h][o]#更新输入->隐藏层的权重foriinrange(self.input_n):forhinrange(self.hidden_n):change=hidden_deltas[h]*self.input_cells[i]self.input_weights[i][h]+=learn*change+correct*self.input_correction[i][h]self.input_correction[i][h]=change#获取全局误差error=0.0foroinrange(len(label)):error=0.5*(label[o]-self.output_cells[o])**2#平方误差函数returnerrordeftrain(self,cases,labels,limit=10000,learn=0.05,correct=0.1):foriinrange(limit):#设置迭代次数error=0.0forjinrange(len(cases)):#对输入层进行访问label=labels[j]case=cases[j]error+=self.back_propagate(case,label,learn,correct)#样例,标签,学习率,正确阈值deftest(self):#学习异或cases=[[0,0],[0,1],[1,0],[1,1],]#测试样例labels=[[0],[1],[1],[0]]#标签self.setup(2,5,1)#初始化神经网络:输入层,隐藏层,输出层元素个数self.train(cases,labels,10000,0.05,0.1)#可以更改forcaseincases:print(self.predict(case))if__name__=='__main__':nn=BPNeuralNetwork()()。

 

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Python神经网络编程是一种使用Python编程语言来构建和训练神经网络模型的技术。它通过利用Python语言的简洁和易用性,使得神经网络编程变得更加高效和便捷。 Python神经网络编程可以应用于许多领域,如图像识别、自然语言处理、预测分析等。它能够通过训练神经网络模型来从复杂的数据中提取有用的信息和模式。因此,Python神经网络编程具有很高的灵活性和适应性,可以适用于不同类型的数据和问题。 在Python神经网络编程中,常用的包括Keras、TensorFlow和PyTorch等。这些提供了丰富的工具和函数,可以帮助我们构建、训练和评估神经网络模型。同时,它们也支持GPU加速,可以大大提升神经网络的计算效率。 对于高清图像处理,Python神经网络编程也有很好的应用。我们可以利用卷积神经网络(CNN)来提取图像中的特征,并使用这些特征来进行分类、检测等任务。通过对大量数据的训练,神经网络可以学习到图像的高级特征,并能够准确地对图像进行处理和分析。 总而言之,Python神经网络编程是一种强大的工具,可以帮助我们构建和训练高效的神经网络模型。它不仅在科学研究中有广泛应用,也在工业和商业领域中发挥着重要作用。无论是处理图像、文本还是预测分析,Python神经网络编程都能够帮助我们实现高清的结果和高准确度的预测。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值