Hadoop离线分析在实际项目中的架构

点击流日志数据挖掘概述

很多网站(比如电商)都会收集用户的浏览行为,然后进行分析能够实现广告推荐等功能,可以改善网站设计,提高企业利润。

数据收集

预埋一些js代码,为页面上的一些标签添加绑定事件。当事件发生时可以使用ajax请求到后台。Web服务器的日志中将会记录这些事件信息,从而获得不断增长的日志文件。

数据处理流程

一般来说离线分析都是这个流程。

各流程概述:

  1. 数据采集:定制开发采集程序,或使用开源框架FLUME
  2. 数据预处理:定制开发mapreduce程序运行于hadoop集群
  3. 数据仓库技术:基于hadoop之上的Hive
  4. 数据导出:基于hadoop的sqoop数据导入导出工具
  5. 数据可视化:定制开发web程序或使用kettle等产品
  6. 整个过程的流程调度:hadoop生态圈中的oozie工具或其他类似开源产品

数据收集完成后,因为数据量非常大,后续的操作都是使用分布式程序进行处理。

典型推荐系统的架构

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值