在 11 分钟内使用 PyTorch 为 Mac 设置机器学习(适用于所有 M1、M2)

这段文字介绍了如何在苹果硅芯片的Mac上配置PyTorch环境,以便进行数据科学和机器学习。作者首先介绍了PyTorch在苹果硅芯片上的加速训练功能,并强调了该功能目前仍处于beta测试阶段。

接着,作者详细介绍了配置环境的步骤,包括使用Homebrew包管理器安装软件,并列出了需要安装的库,例如Jupyter、NumPy、Pandas、Matplotlib和TQDM等。

作者还强调了需要使用Mac OS 12.3及以上版本才能使用PyTorch的加速训练功能。最后,作者演示了如何使用Homebrew安装软件,并表示整个过程大约需要5分钟。

总的来说,这段文字为想要在苹果硅芯片的Mac上进行数据科学和机器学习的人提供了详细的操作步骤和必要的软件信息。

使用 PyTorch 为您的 Apple M1 或 M2(普通版、Pro 版、Max 版或 Ultra 版)Mac 设置数据科学和机器学习环境。获取代码 - https://github.com/mrdbourke/pytorch-apple-siliconPyTorch 在 Mac 上的公告博客文章 - https://pytorch.org/blog/introducing-accelerated-pytorch-training-on-mac/学习 PyTorch - https://learnpytorch.io为 TensorFlow 设置 Apple M1 - https://youtu.be/_1CaUOHhI6U

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

mrdbourke

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值