动态计算图与 Python:深度解析 PyTorch Autograd 机制

动态计算图与 Python:深度解析 PyTorch Autograd 机制

在这里插入图片描述

引言

在深度学习的世界中,计算图(Computation Graph)是理解自动求导(Autograd)机制的关键。PyTorch 采用动态计算图(Dynamic Computational Graph,DCG)作为其核心特性之一,使得模型训练和调试更加灵活。在这篇文章中,我们将深入解析 PyTorch 的 Autograd 机制,并通过代码示例帮助你掌握其核心原理。

计算图的基本概念

计算图是一种用于表示张量(Tensor)操作的有向图,其中节点表示变量,边表示计算操作。在深度学习中,我们使用计算图来跟踪数据流并进行自动求导。

PyTorch 采用动态计算图,意味着计算图是在运行时动态构建的,每次前向传播都会生成新的计算图。这与 TensorFlow 1.x 采用的静态计算图(Static Computati

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序员Gloria

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值