动态计算图与 Python:深度解析 PyTorch Autograd 机制
引言
在深度学习的世界中,计算图(Computation Graph)是理解自动求导(Autograd)机制的关键。PyTorch 采用动态计算图(Dynamic Computational Graph,DCG)作为其核心特性之一,使得模型训练和调试更加灵活。在这篇文章中,我们将深入解析 PyTorch 的 Autograd 机制,并通过代码示例帮助你掌握其核心原理。
计算图的基本概念
计算图是一种用于表示张量(Tensor)操作的有向图,其中节点表示变量,边表示计算操作。在深度学习中,我们使用计算图来跟踪数据流并进行自动求导。
PyTorch 采用动态计算图,意味着计算图是在运行时动态构建的,每次前向传播都会生成新的计算图。这与 TensorFlow 1.x 采用的静态计算图(Static Computati