一.对离散傅里叶变换的解释
傅里叶变换中有一个离散傅里叶变换是现代数字系统经常用的变换,甚至比连续傅里叶变换的应用场合还要多,毕竟我们目前处在一个数字化的世界中,那么离散傅里叶变换要怎样理解呢?
离散傅里叶变换本质是周期信号求傅里叶级数!
离散信号的DTFT(离散时间傅里叶变换)在频域上是连续且周期性的,omega的周期为2pi,但是连续信号在机器中并不好储存,DFT(离散傅里叶变换)最好理解的方法就是当作它是在频域上对DTFT的采样,每隔2pi/N的频率采样一次,这样把连续的频率变成了离散的频率。
但是在写法上和DTFT有所不同,一般情况下分析DTFT的时候都会选取-pi~pi这个区间进行画图和分析,但是在DFT上我们应该选取0<=k<=N-1的区间,对应的频率也就是0~2pi这个区间。因为DTFT是周期性而且周期是2pi,所以-pi~0这个区间其实就是pi~2pi这个区间。
二.离散傅里叶变换
如果有一个周期为N的离散信号,是整数,则,按照连续信号傅里叶级数的思想,可以表达为频率的傅里叶级数,且在区间内是完备正交基,由于是周期函数,所以其中的一个周期,就可以完整表达,则:
。
为求,两边乘以,得到:
通常将频域系数记为,,我们发现
当然将进行周期延拓,便很容易得到周期函数。得到离散傅里叶变换对为:
可以看出来离散傅里叶变换是直接利用周期信号求级数得来的。
注:本文整理网上资料,包括知乎、博客等,如有侵权立刻删除。