给出两个 非空 的链表用来表示两个非负的整数。其中,它们各自的位数是按照 逆序 的方式存储的,并且它们的每个节点只能存储 一位 数字。
如果,我们将这两个数相加起来,则会返回一个新的链表来表示它们的和。
您可以假设除了数字 0 之外,这两个数都不会以 0 开头。
示例:
输入:(2 -> 4 -> 3) + (5 -> 6 -> 4)
输出:7 -> 0 -> 8
原因:342 + 465 = 807
思路:
我们使用变量来跟踪进位,并从包含最低有效位的表头开始模拟逐位相加的过程。
图1,对两数相加方法的可视化: 342 + 465 = 807342+465=807,每个结点都包含一个数字,并且数字按位逆序存储。
算法思想:
就像你在纸上计算两个数字的和那样,我们首先从最低有效位也就是列表 l1 和 l2 的表头开始相加。由于每位数字都应当处于 0…9 的范围内,我们计算两个数字的和时可能会出现 “溢出”。例如,5 + 7 = 12。在这种情况下,我们会将当前位的数值设置为 2,并将进位 carry = 1 带入下一次迭代。进位 carry 必定是 0 或 1,这是因为两个数字相加(考虑到进位)可能出现的最大和为9+9+1=19。
伪代码如下:
- 将当前结点初始化为返回列表的哑结点。
- 将进位 carry 初始化为 0。
- 将 p 和 q 分别初始化为列表 l1 和 l2 的头部。
- 遍历列表 l1 和 l2 直至到达它们的尾端。
- 将 x 设为结点 p 的值。如果 p 已经到达 l1 的末尾,则将其值设置为 0。
- 将 y 设为结点 q 的值。如果 q 已经到达 l2 的末尾,则将其值设置为 0。
- 设定 sum = x + y + carry。
- 更新进位的值,carry = sum / 10。
- 创建一个数值为 (sum mod 10) 的新结点,并将其设置为当前结点的下一个结点,然后将当前结点前进到下一个结点。
- 同时,将 p 和 q 前进到下一个结点。
- 检查 carry = 1 是否成立,如果成立,则向返回列表追加一个含有数字 1 的新结点。
- 返回哑结点的下一个结点。
请注意,我们使用哑结点来简化代码。如果没有哑结点,则必须编写额外的条件语句来初始化表头的值。
Java代码:
public ListNode addTwoNumbers(ListNode l1, ListNode l2) {
ListNode dummyHead = new ListNode(0);
ListNode p = l1, q = l2, curr = dummyHead;
int carry = 0;
while (p != null || q != null) {
int x = (p != null) ? p.val : 0;
int y = (q != null) ? q.val : 0;
int sum = carry + x + y;
carry = sum / 10;
curr.next = new ListNode(sum % 10);
curr = curr.next;
if (p != null) p = p.next;
if (q != null) q = q.next;
}
if (carry > 0) {
curr.next = new ListNode(carry);
}
return dummyHead.next;
}
复杂度分析
时间复杂度:O(max(m,n)),假设 m 和 n分别表示 l1 和 l2 的长度,上面的算法最多重复 max(m,n) 次。
空间复杂度: O(max(m,n)), 新列表的长度最多为max(m,n)+1。
Python代码:
class Solution:
def addTwoNumbers(self, l1: ListNode, l2: ListNode) -> ListNode:
dummyHead = ListNode(0)
curr, carry = dummyHead, 0
while l1 or l2:
sum = 0
if l1:
sum += l1.val
l1 = l1.next
if l2:
sum += l2.val
l2 = l2.next
sum += carry
carry = sum // 10
curr.next = ListNode(sum % 10)
curr = curr.next
if carry > 0:
curr.next = ListNode(1)
return dummyHead.next;