CVPR 2019 论文大盘点—人体姿态篇

本文精选了CVPR2019中关于人体姿态估计的论文,涵盖3D与2D姿态估计、姿态迁移、人体图像生成及人体捕捉等领域。包括自监督学习、时域上下文信息利用、几何感知表示等多种方法,以及工业界巨头如微软、谷歌的研究成果。
摘要由CSDN通过智能技术生成

在这里插入图片描述
在CVPR 2019 中有关人体姿态的论文,研究 3D人体姿态估计的论文最多,有 11 篇,研究 2D 姿态估计的 7 篇,姿态迁移 2 篇,人体图像生成 1 篇,人体捕捉 2 篇,另外还有2篇创建了新的基准数据集。

姿态估计是很实用的CV技术,所以引起了很多工业界巨头的关注,微软、谷歌、Facebook、商汤、字节跳动都有论文。

可以在以下网站下载这些论文:
http://openaccess.thecvf.com/CVPR2019.py

如果想要下载所有CVPR 2019 论文,请点击这里:
CVPR2019 最全整理:全部论文下载,GitHub 源码汇总、直播视频、论文解读等

希望对研究开发相关方向的同学有帮助。

3D 姿态估计

3D人体姿态的自监督学习,使用多视几何的方法

土耳其中东技术大学

Self-Supervised Learning of 3D Human Pose Using Multi-View Geometry

Muhammed Kocabas, Salih Karagoz, Emre Akbas

https://github.com/mkocabas/EpipolarPose

利用视频中时域上下文信息改进3D人体姿态估计,使用 bundle adjustment的方法

牛津大学、DeepMind

Exploiting Temporal Context for 3D Human Pose Estimation in the Wild

Anurag Arnab, Carl Doersch, Andrew Zisserman

https://github.com/deepmind/Temporal-3D-Pose-Kinetics

语义图卷积网络用于回归问题,改进了3D人体姿态估计

罗格斯大学、宾厄姆顿大学

Semantic Graph Convolutional Networks for 3D Human Pose Regression

Long Zhao, Xi Peng, Yu Tian, Mubbasir Kapadia, Dimitris N. Metaxas

https://github.com/garyzhao/SemGCN

用于人体姿态估计和单视图3D重建的逆图熵网络,从2D场景推断3D信息

昆士兰科技大学、昆士兰大学

IGE-Net: Inverse Graphics Energy Networks for Human Pose Estimation and Single-View Reconstruction

Dominic Jack, Frederic Maire, Sareh Shirazi, Anders Eriksson

利用几何自监督信息的非监督3D姿态估计

Amazon Lab126、佐治亚理工学院

Unsupervised 3D Pose Estimation With Geometric Self-Supervision

Ching-Hang Chen, Ambrish Tyagi, Amit Agrawal, Dylan Drover, Rohith MV, Stefan Stojanov, James M. Rehg

视频中3D人体姿态估计,使用空域卷积与半监督训练

苏黎世联邦理工、Facebook AI研究院、谷歌大脑

3D Human Pose Estimation in Video With Temporal Convolutions and Semi-Supervised Training

Dario Pavllo, Christoph Feichtenhofer, David Grangier, Michael Auli

https://github.com/facebookresearch/VideoPose3D

用于3D人体姿势估计的对抗性重投影网络的弱监督训练

莱布尼兹大学汉诺威分校

RepNet: Weakly Supervised Training of an Adversarial Reprojection Network for 3D Human Pose Estimation

Bastian Wandt, Bodo Rosenhahn

多视图的快速鲁棒多人3D姿态估计

浙江大学、德克萨斯大学奥斯汀分校

Fast and Robust Multi-Person 3D Pose Estimation From Multiple Views

Junting Dong, Wen Jiang, Qixing Huang, Hujun Bao, Xiaowei Zhou

https://github.com/zju3dv/mvpose

从2D图像进行3D人体姿态估计有多个解,使用混合密度网络在多个数据集上取得了SOTA的结果

新加坡国立大学

Generating Multiple Hypotheses for 3D Human Pose Estimation With Mixture Density Network

Chen Li, Gim Hee Lee

https://github.com/chaneyddtt/Generating-Multiple-Hypotheses-for-3D-Human-Pose-Estimation-with-Mixture-Density-Network

用于3D姿态估计的几何感知表示的弱监督方法

中山大学、北京大学、商汤研究院

Weakly-Supervised Discovery of Geometry-Aware Representation for 3D Human Pose Estimation

Xipeng Chen, Kwan-Yee Lin, Wentao Liu, Chen Qian, Liang Lin

结合3D与2D标注的数据集训练的能够应对室外环境的人体姿态估计算法,在多个室外数据集上达到SOTA

马克斯普朗克信息学研究所

In the Wild Human Pose Estimation Using Explicit 2D Features and Intermediate 3D Representations

Ikhsanul Habibie, Weipeng Xu, Dushyant Mehta, Gerard Pons-Moll, Christian Theobalt

2D 姿态估计

人体相关部件学习的特征局部共享,改进2D人体姿态估计

美国西北大学

Does Learning Specific Features for Related Parts Help Human Pose Estimation?

Wei Tang, Ying Wu

快速人体姿态估计

电子科技大学、Vision Semantics Limited

Fast Human Pose Estimation

Feng Zhang, Xiatian Zhu, Mao Ye

相关解读:

电子科大提出“姿态蒸馏”算法-实现快速人体姿态估计

https://github.com/yuanyuanli85/Fast_Human_Pose_Estimation_Pytorch(非官方)

循环时空亲相似场的高效在线多人2D姿态跟踪

卡内基梅隆大学

Efficient Online Multi-Person 2D Pose Tracking With Recurrent Spatio-Temporal Affinity Fields

Yaadhav Raaj, Haroon Idrees, Gines Hidalgo, Yaser Sheikh

https://www.gineshidalgo.com/

增强通道和空间信息的多人姿态估计

东南大学、ByteDance AI Lab

Multi-Person Pose Estimation With Enhanced Channel-Wise and Spatial Information

Kai Su, Dongdong Yu, Zhenqi Xu, Xin Geng, Changhu Wang

深度高分辨率网络表示,用于人体姿态估计(目前的SOTA)

中国科技大学、微软亚洲研究院

Deep High-Resolution Representation Learning for Human Pose Estimation

Ke Sun, Bin Xiao, Dong Liu, Jingdong Wang

相关解读:

CVPR2019 | 微软、中科大开源基于深度高分辨表示学习的姿态估计算法

https://github.com/leoxiaobin/deep-high-resolution-net.pytorch

对任意姿态估计算法计算的结果进行提精

首尔国立大学、Kwangwoon University

PoseFix: Model-Agnostic General Human Pose Refinement Network

Gyeongsik Moon, Ju Yong Chang, Kyoung Mu Lee

https://github.com/mks0601/PoseFix_RELEASE

一种用于多人2D人体姿态估计的新型自下而上方法,该方法特别适用于城市交通,例如自动驾驶汽车和运输机器人。

洛桑联邦理工学院VITA lab

PifPaf: Composite Fields for Human Pose Estimation

Sven Kreiss, Lorenzo Bertoni, Alexandre Alahi

https://github.com/vita-epfl/openpifpaf

姿态迁移

渐进式姿态注意力模型,用于姿态迁移

华中科技大学、微软、中兴

Progressive Pose Attention Transfer for Person Image Generation

Zhen Zhu, Tengteng Huang, Baoguang Shi, Miao Yu, Bofei Wang, Xiang Bai

相关解读:

CVPR 2019 Oral | 华科开源效果超群的人体姿态迁移算法

https://github.com/tengteng95/Pose-Transfer

在姿态迁移中,通过估计密集内部表观流,更好的引导不同姿态之间的像素迁移

香港中文大学、卡内基梅隆大学、南洋理工大学

Dense Intrinsic Appearance Flow for Human Pose Transfer

Yining Li, Chen Huang, Chen Change Loy

https://github.com/ly015/intrinsic_flow

人体图像生成

基于坐标的纹理修补用于姿态引导的人体图像生成

Samsung AI Center, Skolkovo Institute of Science and Technology

Coordinate-Based Texture Inpainting for Pose-Guided Human Image Generation

Artur Grigorev, Artem Sevastopolsky, Alexander Vakhitov, Victor Lempitsky

人体捕捉

单幅图像人体捕捉:包含手部、脸、人体

马克斯普朗克信息学研究所、宾夕法尼亚大学

Expressive Body Capture: 3D Hands, Face, and Body From a Single Image

Georgios Pavlakos, Vasileios Choutas, Nima Ghorbani, Timo Bolkart, Ahmed A. A. Osman, Dimitrios Tzionas, Michael J. Black

https://github.com/vchoutas/smplify-x

单目人体捕捉:包含手部、脸、人体

卡内基梅隆大学

Monocular Total Capture: Posing Face, Body, and Hands in the Wild

Donglai Xiang, Hanbyul Joo, Yaser Sheikh

https://github.com/CMU-Perceptual-Computing-Lab/MonocularTotalCapture

姿态基准数据集

DeepFashion2: 服饰图像数据集,可用于检测、姿态估计、分割、重识别任务的多功能基准数据集

香港中文大学

DeepFashion2: A Versatile Benchmark for Detection, Pose Estimation, Segmentation and Re-Identification of Clothing Images

Yuying Ge, Ruimao Zhang, Xiaogang Wang, Xiaoou Tang, Ping Luo

https://github.com/switchablenorms/DeepFashion2

提出一个针对拥挤场景的姿态估计方法和新的基准数据集

上海交大、清华

CrowdPose: Efficient Crowded Scenes Pose Estimation and a New Benchmark

Jiefeng Li, Can Wang, Hao Zhu, Yihuan Mao, Hao-Shu Fang, Cewu Lu

https://github.com/Jeff-sjtu/CrowdPose

更多论文盘点:
CVPR 2019 论文大盘点-目标检测篇

CVPR 2019 论文大盘点-人脸技术篇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值