Meachine Leaning

Meachine Leaning

决策树

  1. 决策树可以看作时if-then规则的集合,还可以看作给定特征条件下类的条件概率分布

  2. 决策树学习包括三个步骤:特征选择决策树生成决策树剪枝

  3. 决策树损失函数时正则化的极大似然函数,该损失函数下选择最优决策树是NP完全问题。通常采用启发时方法近似求解。

  4. 决策树生成算法:

    • ID3:使用信息增益作为特征选择方法

    G ( D , A ) = H ( D ) − H ( D ∣ A ) G(D,A)=H(D)-H(D|A) G(D,A)=H(D)H(DA)

    • C4.5:使用信息增益比作为特征选择方法

    G R ( D , A ) = G ( D , A ) H A ( D ) H A ( D ) = − ∑ i n ∣ D i ∣ D l o g ( ∣ D i ∣ D ) G_R(D,A)=\frac{G(D,A)}{H_A(D)}\\ H_A(D)=-\sum_i^n\frac{|D_i|}{D}log(\frac{|D_i|}{D}) GR(D,A)=HA(D)G(D,A)HA(D)=inDDilog(DDi)

    • CART:使用基尼指数作为特征选择方法。生成的是一颗二叉树

    G i n i ( p ) = ∑ ( k = 1 ) K p k ( 1 − p k ) = 1 − ∑ k = 1 K p k 2 Gini(p)=\sum(k=1)^Kp_k(1-p_k)=1-\sum_{k=1}^Kp_k^2 Gini(p)=(k=1)Kpk(1pk)=1k=1Kpk2

  5. 决策树的剪枝:

    • 预剪枝:到一定深度就不再生成
    • 后剪枝:从下向上进行剪枝。如何剪枝后正则化的极大似然函数损失下降,则剪枝。损失函数:

L o s s ( T ) = ∑ t = 1 ∣ T ∣ N t H t ( T ) + α ∣ T ∣ Loss(T)=\sum_{t=1}^{|T|}N_tH_t(T)+\alpha|T| Loss(T)=t=1TNtHt(T)+αT

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值