堆结构的解读

对于数据结构堆来说,堆事一种特定的数据结构,其与二叉树非常类似,但是又与二叉树有所不同,其不同点在于堆不需要左右指针指向孩子节点,而给定一个数组,将数组中的元素进行特定排序之后,就可以得到一个堆,如图是一个数组

添加图片注释,不超过 140 字(可选)

该数组的对应的堆如图:

添加图片注释,不超过 140 字(可选)

从其堆中可以知道,堆在结构上与二叉树几乎一模一样,图中显示的左右指针指向的孩子节点,将数组元素按照堆显示的层级进行排列即可,也就是将数组中的元素按照堆排列后就可以满足堆的性质。

添加图片注释,不超过 140 字(可选)

而在给定一个元素下标之后,就可以快速查找到该元素所对应的父节点和左右孩子节点,先假设元素下标的起始是1,当给定元素下标是为i的时候,我们使用操作parent(i)返回该元素所对应的父节点,left(i)返回该节点的左孩子节点,right(i)返回的是该节点的右孩子节点,这3种操作使用python实现如下:

def  parent(i):#返回给定下标元素对应的父节点下标
    return int((i+1)/2) - 1 #由于数组下标从0开始因此i要加1,同样原因返回结果要减1
def  left(i): #返回给定下标元素的左孩子下标
    return 2*(i+1) - 1
def  right(i): #返回给定下标元素的右孩子下标
    return 2*(i+1)

对于堆右大堆和小堆之分,大堆的特点是父节点的值大于等于孩子节点,小堆的特点是父节点的值小于等于孩子节点,于是在大堆中,在数组中值最大的元素一定在堆的顶部,而对应的位置也就是在数组的首位,同理,小堆而言,值最小的元素在堆的顶部,对应于数组就是最小值元素排在首位,可以向二叉树那样定义堆的高,由于每个节点最多只能包含两个子节点,因此对于n个元素的数组而言,它所对应的堆的高度就是lg(n)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值