如何证明线性规划系统最优解存在性

本文详细阐述了线性规划算法的流程,包括如何将非标准型转化为标准型,判断是否存在最优解的方法,以及通过引入新变量处理无解情况。重点讲解了如何通过新变量法确保原系统的可行性与最优解的存在。
摘要由CSDN通过智能技术生成

先给定simplex所对应的算法的流程图:

添加图片注释,不超过 140 字(可选)

上图是线性规划算法的基本流程描述,但是给定的基本流程描述中的一些步骤还需要进一步的进行分解,第一步是如何将线性规划系统依靠算法的步骤现转换为标准型的线性规划系统,然后进行判断,主要是判断给定的这个线性规划系统是否存在最优解,如果最优解存在的话,那就要去找到线性规划系统的基本解。

给定具体的例子,给定一组线性规划系统,要将其转换成标准型之后,可能会发现转换后的线性规划系统未必会存在基本解:

添加图片注释,不超过 140 字(可选)

如上的线性规划系统转换成标准型之后是:

添加图片注释,不超过 140 字(可选)

而如果想要得到一组基本解,就需要把给定的标准型约束条件中的右边变量全部都先设置为0,但是这么做的话会在第二个约束条件中发现x4=-4,这就会存在与约束条件相违背的情况,也就是违背了所有的变量取值要必须大于等于0的这个约束条件,因此给定的这个例子线性规划系统也就不存在最优解。

由此如果在面对一个线性规划系统的时候,首先是要判断给定的这个线性规划系统是否存在最优解,假设给定线性规划系统是如下:

添加图片注释,不超过 140 字(可选)

也就是这个线性规划系统包含的n个未知的变量,并且有m个约束条件,对这个系统做一个变换:

添加图片注释,不超过 140 字(可选)

在原来系统的基础上增加一个新变量x0,同时目标函数转换成求-x0的最大值,并在每个约束条件左边增加-x0得到一个新的线性规划系统,那么原来线性规划系统存在最可行解的必要条件就是新变换的线性规划系统存在可行解,线性新系统任何可行解在满足约束条件下必须有x0=0。

反过来假设变换后线性规划系统存在可行解,线性可行解中必须满足x0=0。一旦确认原系统存在可行解之后,就能从所有可行解中找到让目标函数最大化的解,于是原系统就存在最优解。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值