[ A*算法 ] 第K短路

在含有N个节点和M条边的有向图中,从节点S到节点T寻找第K短路的问题。每条路径至少包含一条边。输入包括图的结构和起始、结束点及目标路径排名K。输出为第K短路的长度或在不存在时输出-1。数据限制在特定范围内。
摘要由CSDN通过智能技术生成

给定一张N个点(编号1,2…N),M条边的有向图,求从起点S到终点T的第K短路的长度,路径允许重复经过点或边。

注意: 每条最短路中至少要包含一条边。

输入格式

第一行包含两个整数N和M。

接下来M行,每行包含三个整数A,B和L,表示点A与点B之间存在有向边,且边长为L。

最后一行包含三个整数S,T和K,分别表示起点S,终点T和第K短路。

输出格式

输出占一行,包含一个整数,表示第K短路的长度,如果第K短路不存在,则输出“-1”。

数据范围

1≤S,T≤N≤1000

,
0≤M≤105,
1≤K≤1000,
1≤L≤100

 

输入样例:

2 2
1 2 5
2 1 4
1 2 2

输出样例:

14

 

#include <iostream>
#include <queue>
#include <cstring>
#define f(i,l,r) for(i=(l);i<=(r);i++)
#define fe(i,u) for(i=h[u];~i;i=e[i].nxt)
#define ll long long
using namespace std;
const int MAXN = 1e3 + 5, MAXM = 1e5 + 5;
typedef pair<ll, int> PLI;
typedef pair<ll, pair<ll, int> &g
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值