其实求齐次坐标系中三点共线,可以等价于求欧几里得坐标系中三个向量共面.
第一种方法是利用公式: a ⋅ ( b × c ) = 0 \mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})=0 a⋅(b×c)=0
三个向量的混合积等于0,就证明它们共面.
因为两个向量b,c的叉积得到第三个向量d,这个向量b,c所组成的平面垂直,
如果a与d垂直,也就是a与d的点积等于0,那么a与b,c所组成的平面是平行的,由于向量在空间中可以自由平移,所以a与b,c共面.
需要用到Opencv,代码如下:
bool noThreeCollinear(const std::vector<cv::Vec3f> &points){
int n = points.size();
int result = 1;
for (int i = 0; i<n-2;i++){
for (int j = i+1; j<n-1;j++){
for (int k = j+1; k<n;k++){
result *= points[i].dot(points[j].cross(points[k]));
}
}
}
if (result == 0)
{
return false;}
else
{
return true;}
}
第二种方法是判断这三个向量(齐次坐标系中的点)的行列式是不是为0.
det [ x y z ] = 0 \operatorname{det}\left[\begin{array}{lll} {\mathbf{x}} & {\mathbf{y}} & {\mathbf{z}} \end{array}\right]=0 det[xyz]=0
det [ x y z ] = ∣ x 1 y 1 z 1