[C++]判断齐次坐标系中三点是否共线(三个向量是否共面)

通过计算向量的混合积或行列式来判断齐次坐标系中的三点是否共线,即三个向量是否共面。方法包括:1) 利用a⋅(b×c)=0的公式,当点积为0时,向量共面。2) 计算行列式det[xyz],若为0,则三点共线。两种方法本质上相同,代码实现中涉及到Opencv库。
摘要由CSDN通过智能技术生成

其实求齐次坐标系中三点共线,可以等价于求欧几里得坐标系中三个向量共面.
第一种方法是利用公式: a ⋅ ( b × c ) = 0 \mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})=0 a(b×c)=0

三个向量的混合积等于0,就证明它们共面.
因为两个向量b,c的叉积得到第三个向量d,这个向量b,c所组成的平面垂直,
如果a与d垂直,也就是a与d的点积等于0,那么a与b,c所组成的平面是平行的,由于向量在空间中可以自由平移,所以a与b,c共面.
需要用到Opencv,代码如下:

bool noThreeCollinear(const std::vector<cv::Vec3f> &points){
   
    int n = points.size();
    int result = 1;
    for (int i = 0; i<n-2;i++){
   
        for (int j = i+1; j<n-1;j++){
   
            for (int k = j+1; k<n;k++){
   
                result *= points[i].dot(points[j].cross(points[k]));
            }
        }
    }
    if (result == 0)
    {
   return false;}
    else
    {
   return true;}
}

第二种方法是判断这三个向量(齐次坐标系中的点)的行列式是不是为0.
det ⁡ [ x y z ] = 0 \operatorname{det}\left[\begin{array}{lll} {\mathbf{x}} & {\mathbf{y}} & {\mathbf{z}} \end{array}\right]=0 det[xyz]=0
det ⁡ [ x y z ] = ∣ x 1 y 1 z 1

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值