平差之最小二乘法

测量里同精度的观测数据都是呈正态分布的:
X ∼ N ( μ , σ 2 ) X \sim N\left(\mu, \sigma^{2}\right) XN(μ,σ2)
概率密度函数为:
f ( x ) = 1 σ 2 π e − ( x − μ ) 2 2 σ 2 f(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}} f(x)=σ2π 1e2σ2(xμ)2
平差里面:
随机误差 = 观测值 - 期望值
因此,公式可以改写为
f ( l ) = 1 σ 2 π exp ⁡ ( − ε 2 2 σ 2 ) f(l)=\frac{1}{\sigma\sqrt{2 \pi}} \exp \left(-\frac{\varepsilon^{2}}{2 \sigma^{2}}\right) f(l)=σ2π 1exp(2σ2ε2)
或者
f ( l ) = 1 σ 2 π exp ⁡ ( − v 2 2 σ 2 ) f(l)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left(-\frac{v^{2}}{2 \sigma^{2}}\right) f(l)=σ2π 1exp(2σ2v2)
每组观测都有各自的分布,把所有的分布叠加到一起得到联合概率密度:
Ω = 1 σ I N 2 π exp ⁡ ( − 1 v 1 2 2 σ 1 2 ) + 1 σ 2 2 π exp ⁡ ( − 1 v 2 2 2 σ 2 2 ) + 1 σ 3 2 π exp ⁡ ( − 1 v 3 2 2 σ 3 2 ) … 1 σ n 2 π exp ⁡ ( − 1 v n 2 2 σ n 2 ) \begin{aligned} &\Omega=\frac{1}{\sigma_{\mathrm{IN}} \sqrt{2 \pi}} \exp \left(-\frac{1 v_{1}^{2}}{2 \sigma_{1}^{2}}\right)+\frac{1}{\sigma_{2 \sqrt{2 \pi}}} \exp \left(-\frac{1 v_{2}^{2}}{2 \sigma_{2}^{2}}\right)\\ &+\frac{1}{\sigma_{3} \sqrt{2 \pi}} \exp \left(-\frac{1 v_{3}^{2}}{2 \sigma_{3}^{2}}\right) \ldots \frac{1}{\sigma_{n} \sqrt{2 \pi}} \exp \left(-\frac{1 v_{n}^{2}}{2 \sigma_{n}^{2}}\right) \end{aligned} Ω=σIN2π 1exp(2σ121v12)+σ22π 1exp(2σ221v22)+σ32π 1exp(2σ321v32)σn2π 1exp(2σn21vn2)
Ω = ( Π i = 1 n 1 σ i 2 π ) e − K with ⁡ ⋯ K = 1 2 ∑ i = 1 n 1 σ i 2 v i \Omega=\left(\Pi_{i=1}^{n} \frac{1}{\sigma_{i} \sqrt{2 \pi}}\right) e^{-K} \operatorname{with} \cdots K=\frac{1}{2} \sum_{i=1}^{n} \frac{1}{\sigma_{i}^{2}} v_{i} Ω=(Πi=1nσi2π 1)eKwithK=21i=1nσi21vi

现在的目的是求最大似然估计,也就是要求概率密度函数的最大值.
求导令一阶导数=0可求得极值,推导可见:
https://blog.csdn.net/xidianzhimeng/article/details/20847289?depth_1-utm_source=distribute.pc_relevant.none-task&utm_source=distribute.pc_relevant.none-task
关于最小二乘的本质,可见:
https://www.zhihu.com/question/37031188
最后得到: ∑ i = 1 n 1 σ i 2 v i 2 → min ⁡ \sum_{i=1}^{n} \frac{1}{\sigma_{i}^{2}} v_{i}^{2} \rightarrow \min i=1nσi21vi2min
 With :  1 σ i 2 = P i \text { With : } \frac{1}{\sigma_{i}^{2}}=P_{i}  With : σi21=Pi
P是观测值的权.
权阵:
P = [ P 11 0 ⋱ 0 p n n ] P=\left[\begin{array}{cc} P_{11} & 0 \\ & \ddots \\ 0 & p_{n n} \end{array}\right] P=P1100pnn
也就是求 ∑ i = 1 n p i v i 2 → min ⁡ \sum_{i=1}^{n} p_{i} v_{i}^{2} \rightarrow \min i=1npivi2min
写成矩阵形式:
v T P v → min ⁡ v^{T} P v \rightarrow \min vTPvmin
定义协因数矩阵:
Q = [ q 11 q 12 q 13 ⋯ q 1 n q 21 q 22 q 23 ⋯ q 2 n ⋮ ⋱ ⋮ ⋮ ⋱ ⋮ q n 1 q n 2 q n 3 ⋯ q n n ] \mathrm{Q}=\left[\begin{array}{ccccc} q_{11} & q_{12} & q_{13} & \cdots & q_{1 n} \\ q_{21} & q_{22} & q_{23} & \cdots & q_{2 n} \\ \vdots & & \ddots & & \vdots \\ \vdots & & & \ddots & \vdots \\ q_{n 1} & q_{n 2} & q_{n 3} & \cdots & q_{n n} \end{array}\right] Q=q11q21qn1q12q22qn2q13q23qn3q1nq2nqnn
观测值的协因数 Q ii 和与方差成正比 , 而协因数 Q ij (相关权倒数 ) 与协方差成正比。
权P是比较观测值精度高低的一种指标 ,
而协因数Q是比较观测值之间相关程度的一种指标。
P = Q − 1 P=Q^{-1} P=Q1
P = [ p 11 p 12 p 13 ⋯ p 1 n p 21 p 22 p 23 ⋯ p 2 n ⋮ ⋱ ⋮ ⋮ ⋱ ⋮ p n 1 p n 2 p n 3 ⋯ p n n ] \mathrm{P}=\left[\begin{array}{ccccc} p_{11} & p_{12} & p_{13} & \cdots & p_{1 n} \\ p_{21} & p_{22} & p_{23} & \cdots & p_{2 n} \\ \vdots & & \ddots & & \vdots \\ \vdots & & & \ddots & \vdots \\ p_{n 1} & p_{n 2} & p_{n 3} & \cdots & p_{n n} \end{array}\right] P=p11p21pn1p12p22pn2p13p23

  • 7
    点赞
  • 25
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值