本文是看到了菲波那契数列:F(N) = F(N-1)+ F(N-2),如果,严格遵守该序列,对于求第N项的值,有矩阵乘法的方式可以将时间复杂度降至O(logN)。上文转自:左程云(程序代码面试指南:pag182)
本文严重参考:左程云(程序代码面试指南)
当时,一直想不明白,为什么简单递归的优化跟矩阵乘法有关系,,,然后,矩阵乘法还能解决什么问题呢????
嗯嗯,看到了下面这篇博文,觉得不错,于是乎,转载了,,,,,希望对大家有所帮助。。。。
题目:定义Fibonacci数列如下:
f(n)=
输入n,用最快的方法求该数列的第n项。
分析:在很多C语言教科书中讲到递归函数的时候,都会用Fibonacci作为例子。因此很多程序员对这道题的递归解法非常熟悉,看到题目就能写出如下的递归求解的代码。
///
//Calculate the nth item of Fibonacci Series recursively
///
long long Fibonacci_Solution1(unsigned int n)
{
int result[2]= {0, 1};
if(n< 2)
return result[n];
return Fibonacci_Solution1(n- 1) + Fibonacci_Solution1(n - 2); //不断的往回递归
}
但是,教科书上反复用这个题目来讲解递归函数,并不能说明递归解法最适合这道题目。我们以求解f(10)作为例子来分析递归求解的过程。要求得f(10),需要求得f(9)和f(8)。同样,要求得f(9),要先求得f(8)和f(7)……我们用树形结构来表示这种依赖关系
我们不难发现在这棵树中有很多结点会重复的,而且重复的结点数会随着n的增大而急剧增加。这意味这计算量会随着n的增大而急剧增大。事实上,用递归方法计算的时间复杂度是以n的指数的方式递增的。大家可以求Fibonacci的第100项试试,感受一下这样递归会慢到什么程度。在我的机器上,连续运行了一个多小时也没有出来结果。
其实改进的方法并不复杂。上述方法之所以慢是因为重复的计算太多,只要避免重复计算就行了。比如我们可以把已经得到的数列中间项保存起来,如果下次需要计算的时候我们先查找一下,如果前面已经计算过了就不用再次计算了。
更简单的办法是从下往上计算,首先根据f(0)和f(1)算出f(2),在根据f(1)和f(2)算出f(3)……依此类推就可以算出第n项了。很容易理解,这种思路的时间复杂度是O(n)。
///
//Calculate the nth item of Fibonacci Series iteratively
///
long
{
}
此刻,如果递归式严格遵循F(N) = F(N -1) + F(N - 2),对于求第N项的值,有矩阵的乘法的方式可以将时间
复杂度降低为:O(logn)。F(N) = F(N -1) + F(N - 2)是一个二阶递推数列,一定可以用矩阵乘法的形式表示,
且状态矩阵为2×2的矩阵:
把菲波那契的前4项F(1)== 1,F(2)==1, F(3) == 2, F(4) == 3待入,可以求出状态矩阵:
求矩阵之后,当n > 2时,原来的公式可以化简为:
所以:求菲波那契数列第N项的问题就变成了如何用最快的方法求一个矩阵的N次方的问题,而求矩阵N次方的问题明显
是一个能够在O(logn)时间内解决的问题。为了表述方便,我们现在用求一个整数N次方的例子来说明,因为只要理解了
如何在O(logn)的时间复杂度内求整数N次方的问题,对于求矩阵N次方的问题是同理的。。。。区别在于矩阵和整数乘
法在细节上有些不一样,但对于如何乘更快,道理是一样的。
假设一个整数是10,如何最快的求解10的75次方???
1,75的二进制形式为:1001011
2,10的75次方为:
在这个过程中,我们先求10(1)相当于10的1次方,然后根据10(1)求出10(2),然后接着求出10(4),,,
最后根据10(32)求出10(64),即根据75的二进制数形式总共有多少位,我们就使用了几次乘法。
3,在步骤2中,把应该累乘的值相乘即可,比如,上面的10(64),10(8),10(2),10(1),只是因为64,8,
2,1对应到75的二进制数中,相应位上为1。仅此而已
单位矩阵:本质就相当于1,单位矩阵乘于一个矩阵都等于该矩阵。
对于矩阵来说:
求矩阵m的p次方(matrixPower)
两个矩阵相乘(muliMatrix)
public int[][] matrixPower(int[][] m, int p)
{
int[][] res = new int[m.length][m[0].length];
//先把res设为单位矩阵,相当于整数中的1
for(int i = 0; i< res.length; i++)
{
res[i][i] = 1;
}
int [][] tmp = m;
for(; p!= 0; p>>=1)
{
if((p & 1) != 0)
res = muliMatrix(res, tmp);
tmp = muliMatrix(tmp, tmp);
}
return res;
}
public int[][] muliMatrix(int [][] m1, int[][] m2)
{
int [][] res = new int[m1.length][m2[0].length];
for(int i=0; i< m1.length; i++)
{
for(int j=0; j<m2[0].length; j++)
{
for(int k =0; k < m2.length; k++)
{
res[i][j] += m1[i][k] * m2[k][j];
}
}
}
return res;
}
所以,用矩阵乘法求解菲波那契数列第N项的全部过程:
public int f3(int n)
{
if(n < 1)
return 0;
if(n == 1 || n == 2)
return 1;
int [][] base = {{1,1}, {1,0}};
int [][] res = matrixPower(base, n-2);
return res[0][0] + res[1][0];
}
台阶问题:
青蛙跳台阶,一次可以跳一阶,一次也可以跳两阶。如果台阶有1阶,方法只有一种;如果台阶有两阶,方法有两阶。
那么N阶呢???
S(N) = S(N-1) + S(N -2),初始S(1) == 1, S(2) == 2;
实现过程完全和上面是一样的,,,,
然后代码的最终实现:
public int(int n)
{
if(n < 1)
return 0;
if(n == 1 || n == 2)
return 1;
int [][] base = {{1,1}, {1,0}};
int [][] res = matrixPower(base, n-2);
return 2res[0][0] + res[1][0]; //这里出现的2,仅仅因为初值为2
}
母牛问题:
假设农场中成熟的母牛每年只会生1头小母牛,并且永远不会死。第一年农场有1只成熟的母牛,从第二年开始,母牛开
始生小母牛。每只小母牛3年之后成熟又可以生小母牛。给定整数N,求出N年后牛的数量。
第N-1年的牛会毫无损失的活到第N年。同时所有成熟的牛都会生1头新的牛,就是第N-3年的所有牛到第N年肯定都是
成熟的牛,其间出生的牛肯定都没有成熟。所以:
C(n) = C(n - 1) + C(n - 3),初始:C(1) == 1, C(2) == 2, C(3) == 3;
同样的,C(n) = C(n - 1) + C(n - 3)是一个三阶递推数列,一定可以用矩阵乘法的形式表示,且状态矩阵为
3 × 3的矩阵。
求矩阵之后,当n>3,原来的公式可以化简为:
代码实现:
public int(int n)
{
if(n < 1)
return 0;
if(n == 1 || n == 2 || n==3)
return 1;
int [][] base = {{1,1,0}, {1,0,0}, {1,0,0}};
int [][] res = matrixPower(base, n-3);
return 3*res[0][0] + 2*res[1][0] + 3*res[2][0]; //这里出现的2,仅仅因为初值为2
}
如果,如果,递归式严格符合:
那么它就是一个i阶的递推式,必然有与i×i的状态矩阵有关的矩阵乘法表达式,都可以降
低时间复杂度。。。。。。