力扣-转置矩阵

 

文章目录

  • 一    题目描述
  • 二    算法思路
  • 三    代码描述

 


一、题目描述

给你一个二维整数数组 matrix, 返回 matrix 的 转置矩阵 。

矩阵的 转置 是指将矩阵的主对角线翻转,交换矩阵的行索引与列索引。

示例 1:

输入:matrix = [[1,2,3],[4,5,6],[7,8,9]]
输出:[[1,4,7],[2,5,8],[3,6,9]]
示例 2:

输入:matrix = [[1,2,3],[4,5,6]]
输出:[[1,4],[2,5],[3,6]]

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/transpose-matrix
 

二、算法思想

根据题意可知这个题目是比较简单的,但是需要注意的是,所给矩阵不一定是行和列相等的矩阵,不能够先入为主,认为该矩阵是行列相等的矩阵,所以转置过程中就要新建一个矩阵,新建矩阵的行数等于原矩阵的列数,新建矩阵的列数等于原矩阵的行数。两层循环即可实现矩阵的转置。


三、代码实现

class Solution {
    public int[][] transpose(int[][] matrix) {
     int temp;
        boolean [][]flag=new boolean[matrix.length][matrix.length];
        for(int i=0;i<matrix.length;++i){
            for(int j=0;j<matrix.length;++j){
                if(flag[i][j]==false){
                    flag[i][j]=flag[j][i]=true;
                    temp=matrix[i][j];
                    matrix[i][j]=matrix[j][i];
                    matrix[j][i]=temp;
                }
            }
        }
        return matrix;
    }
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值