机器学习与深度学习
文章平均质量分 67
学习记录
MYH永恒
这个作者很懒,什么都没留下…
展开
-
python操作矩阵小记(转置、相乘、逆)
python中numpy操作矩阵的一些函数import numpy as np# 定义一个矩阵并打印A = np.mat('3 4; 2 16')print(A)# 计算矩阵的逆并打印inverse_A = np.linalg.inv(A)print(inverse_A)# 矩阵的乘法并打印(为单位矩阵)dot = np.dot(A, inverse_A)print(dot)''' numpy中matrix和array的区别 matrix是矩阵,只能是原创 2021-12-03 16:34:59 · 516 阅读 · 0 评论 -
TensorFlow进阶:车牌号识别项目
终于算是闲下来点时间了,也不能算闲,该交的报告什么的算完事了。其他要交的东西现在还不急,然后考研的东西现在也不想看,再加上中午没睡好,下午也不想学习新的东西了,就抽出点时间把前段时间做的一个小项目来记录分享一下吧。一、项目简介1.想要干什么?这个项目就是给你一张有车牌的图片,如下图,你怎么把这张个车牌上的车牌号给识别出来呢?从我前段时间的学习也可以看到,这个地方的识别我肯定想用到前面学习到的机器学习的方法。前面学习到的和识别有关的也就是那个Mnist手写数字识别了,那我接下来的思路就是怎么将这个问原创 2021-04-30 11:44:30 · 18115 阅读 · 36 评论 -
Mnist手写数字识别进阶:模型重构与模型保存
经过前面一段时间的学习,今天终于算是把所有的关于Mnist手写数字识别的问题给学完了。从刚开始的单个神经元到后面的单层隐藏层的神经网络,以及多层隐藏层的神经网络,再加上今天要总结的模型的重构以及保存复用等等问题。从刚开始对深度学习只是听说,到现在跟着慕课敲出了一些简单的机器学习的实现代码,在这几天学习的过程中,感觉也只是大致知道了这个流程,还不能达到自己实现的程度,毕竟也只是跟着慕课敲代码,所以可能效果也不是很明显;不过我觉得首先去学习一门新的知识,能迈出第一步就是很大的进步,后面慢慢学习,慢慢巩固,应该原创 2021-03-17 20:10:00 · 1115 阅读 · 0 评论 -
Mnist手写数字识别进阶:多层神经网络应用(续)
在上一节中,构建了多层神经网络来对Mnist手写数字进行识别,但是我们也只设置了一个隐藏层,为了是我们的模型准确可以达到更高,其实我们可以多写几个隐藏层,那么这里我们就再加入一个隐藏层。目录构建模型附:完整代码主要做出的修改就是构建神经网络的部分,多加入一层隐藏层。构建模型# 构建隐藏层H1_NN = 256 # 第1隐藏层神经元数量H2_NN = 64 # 第2隐藏层神经元数量# 输入层 - 第1隐藏层参数和偏置项w1 = tf.Variable(tf.truncated_no原创 2021-03-14 22:47:42 · 648 阅读 · 0 评论 -
Mnist手写数字识别进阶:多层神经网络应用
在上个实例当中,实现了单个神经元模型来识别手写数字,对于单个神经元模型,首先是输入数据,然后根据对应的权重进行求和,再通过一个激活函数即可得到最终的结果。目录一、单个神经元模型回顾二、全连接单隐含层神经网络1、载入数据2、构建输入层3、构建隐藏层(新)4、构建输出层5、训练模型6、模型应用一、单个神经元模型回顾就如下图所示,就是单个神经元实现的,而我们将一个求和和激活函数这个整体看作是一个神经元,而多层神经网络无非就是多加几个神经元。关于激活函数,常见的有以下几种:但是从上次的训练结果来看,正原创 2021-03-13 22:48:40 · 1029 阅读 · 0 评论 -
MNIST手写数字识别预测结果可视化
在完成了MNIST手写数字模型的训练之后,我们就可以使用训练好的模型进行预测手写数字了。这里还是使用MNIST数据集中所提供的测试数据。可以仅仅对测试集的数据进行预测,并直接打印出来结果即可。但是为了和原图像进行对比,这里定义了一个可视化的函数,将原图像以及预测结果值进行显示,可以使结果更加直观。在上述基础上加上下面代码就可以了。# 对测试集的数据进行预测prediction_result = sess.run(tf.argmax(pred, 1), feed_dict={x: mnist.test原创 2021-03-11 10:50:32 · 4173 阅读 · 0 评论 -
利用tensorflow进行机器学习实例3(MNIST手写数字识别)
在学习完简单的线性回归问题之后,但是线性回归只能解决一些房价预测等求解具体数值的问题,但是在现实生活中有很多的分类问题,例如:对于图片的分类、判断是否等问题。今天想研究的问题就是这一类的分类问题:MNIST手写数字识别,就是利用我们训练的模型对一张手写数字图片进行识别,判断这个数字是0~9中的哪一个?...原创 2021-03-08 20:00:21 · 920 阅读 · 1 评论 -
利用tensorflow进行机器学习实例2(波士顿房价预测)
昨天已经跟着慕课完成了一个最简单的机器学习实例:线性回归。而且是只有一个变量的,不过通过那个例子我已经理解了机器学习的基本步骤,如何创建数据集、如何创建模型、如何训练模型、如何用训练好的模型进行预测等等。接下来我又跟着慕课做了一个多元线性回归的实例:波士顿房价的预测。这里的变量就不是一个了,而是12个,这样我们就必须使用到多元线性回归的问题。关于慕课的学习,我是在中国大学mooc上学习的,课程名称是:深度学习应用开发-TensorFlow实践,有兴趣可以去学习一下,我觉得讲解的很详细,而且会带着把每一句原创 2021-03-06 13:14:24 · 2468 阅读 · 1 评论 -
线性回归机器学习补充(显示损失Loss)
通过昨天的学习,我们已经可以将那个简单的线性回归问题模型训练出来。接下来我们想要对每一次的损失进行显示出来,需要在原来的基础上加上一些代码。由于每训练一次就会产生一个损失值,所以我们没有必要将他们全部打印出来,这个时候设置一个参数display_step 来控制打印的粒度;然后设置一个step 参数为训练的步数,一个列表loss_list 来存储每次的损失。具体代码如下,只是在原来代码上做了一些改动。import tensorflow as tfimport matplotlib.pyplot as原创 2021-03-05 11:04:10 · 958 阅读 · 1 评论 -
利用tensorflow进行机器学习实例(线性回归)
通过对tensorflow基础知识学习之后,现在可以通过一个简单的例子来进行机器学习的实践了。这里以一个线性回归的例子来做。1、原创 2021-03-04 22:52:28 · 541 阅读 · 1 评论 -
监督式机器学习的基本术语
关于机器学习系统:通过学习如何组合输入西悉尼,来对未见过的数据做出有用的预测。下面来学习一些常用术语。以一个简单的线性回归为例。由于概念比较多,所以大部分是慕课上PPT的截图,以备后续复习使用。目录监督式机器学习1、标签和特征2、样本和模型3、训练4、损失模型训练与降低损失1、模型训练要点2、收敛3、计算损失例子梯度下降法学习率监督式机器学习1、标签和特征标签:是我们要预测的真实事物线性回归中的y变量特征:是指用于描述数据的输入变量线性回归中的{x1, x2, x3,…,xn}变量2、样原创 2021-03-04 21:43:38 · 256 阅读 · 1 评论 -
深度学习应用开发-TensorFlow 入门
今天开始打算学习一下关于深度学习有关的知识,需要安装python和下载配置tensorflow环境。因为原来对环境已经配置好了,在这里就不再赘述,不过确实挺麻烦的,我当时配置的时候花了很长的时间才配置好的,如果自己实在配置不好,就去找淘宝吧…关于人工智能、深度学习、机器学习等概念,其实就是通过让机器通过人的思维方式进行学习,通过大量的已知数据对其进行训练,并不断的改变模型参数,最终得到最优的模型。目录1、hello world程序2、tensorflow中节点信息3、张量的属性4、会话的几种模式5、常量原创 2021-03-04 20:45:17 · 551 阅读 · 1 评论