Halcon 中mura缺陷检测

本文详细介绍了在高纹理图像中检测Mura类型缺陷的过程,包括背景提取、图像差分、中值滤波和缺陷特征提取等步骤。通过Halcon官方例子,展示了如何利用estimate_background_illumination、sub_image和watersheds_threshold等方法凸显并分割Mura缺陷。最终,文章总结了检测流程,并强调了灰度共生矩阵在特征提取中的作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

文章目录


前言

       最近一直在研究高纹理图像中Mura类型缺陷的检测,此类缺陷检测属于表面检测的范畴,以下是对Halcon官方例子中一个相似案例的分享学习。


一、Mura是什么?

  1. Mura概述

         Mura类型的缺陷,一般用于在屏幕显示行业中,描述在屏幕显示的测试过程中,形成的团块状坏点区域,在表面检测领域常常用来表述皮革,布料,半导体磨砂面等表面团块且与纹理背景有差异的团块缺陷类型。

   2. 检测难点

       Mura类型缺陷,最大的难点在于所处的背景过于复杂,使采用普通的阈值+形态学方法在此处常常失灵,还有就是Mura缺陷的灰度范围和背景中复杂纹理处于同一灰阶范围,难以通过常规手段分割提取。但是对应一些背景较浅的情况 mean_image + 动态阈值的方法也可以起到意料之外的效果。

二、Halcon官方detect_mura_defects_texture.hdev例子 

1.例子描述

* This example shows how to detect mura defects
* in highly textured images

这个例子展示了如果在高纹理的图像中检测mura类型缺陷

*********************

2.读入第一张图像展示

液晶屏的mura缺陷是指屏幕出现的亮度不均匀、色差、条纹、亮点、暗点等问题。使用Halcon进行mura缺陷检测通常涉及图像采集、预处理、缺陷检测等步骤。以下是一个简化版的Halcon代码示例,用于检测液晶屏的mura缺陷: ```halcon * 假设已经获取了图像grab_image_start(Image) * 图像预处理 threshold(Image, Region, 100, 200) connection(Region, ConnectedRegions) select_shape(ConnectedRegions, SelectedRegions, 'area', 'and', 5000, 100000) count_obj(SelectedRegions, Number) * 对选中的区域进行分析,判断是否为缺陷 for i := 1 to Number by 1 select_obj(SelectedRegions, CurrentRegion, i) moments(CurrentRegion, Area, Row, Column, Phi, Lambda1, Lambda2) eccentricity(CurrentRegion, Eccentricity) if (Area < 10000 or Eccentricity > 0.8) dev_display(CurrentRegion) endif endfor * 其他后处理步骤... * 结束图像采集 grab_image_async(Image, 'end') ``` 这段代码的解释如下: 1. 使用`grab_image_start`函数获取图像。 2. 通过`threshold`对图像进行阈值分割,得到初步的区域Region。 3. 使用`connection`将相邻的像素点合并为一个区域,得到连接区域ConnectedRegions。 4. 使用`select_shape`选择面积在一定范围内的区域作为潜在缺陷区域,存储在SelectedRegions中。 5. 遍历SelectedRegions中的每一个区域,使用`moments`计算区域的矩,通过`eccentricity`计算区域的偏心率。 6. 如果区域的面积小于10000或者偏心率大于0.8,则认为该区域是mura缺陷,并显示出来。 需要注意的是,Halcon提供了强大的图像处理和分析功能,但实际应用中的参数(如阈值、面积范围、偏心率阈值等)需要根据具体情况进行调整,以达到最佳的检测效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

沐细雨如春风

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值