Halcon 中mura缺陷检测

本文详细介绍了在高纹理图像中检测Mura类型缺陷的过程,包括背景提取、图像差分、中值滤波和缺陷特征提取等步骤。通过Halcon官方例子,展示了如何利用estimate_background_illumination、sub_image和watersheds_threshold等方法凸显并分割Mura缺陷。最终,文章总结了检测流程,并强调了灰度共生矩阵在特征提取中的作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

文章目录


前言

       最近一直在研究高纹理图像中Mura类型缺陷的检测,此类缺陷检测属于表面检测的范畴,以下是对Halcon官方例子中一个相似案例的分享学习。


一、Mura是什么?

  1. Mura概述

         Mura类型的缺陷,一般用于在屏幕显示行业中,描述在屏幕显示的测试过程中,形成的团块状坏点区域,在表面检测领域常常用来表述皮革,布料,半导体磨砂面等表面团块且与纹理背景有差异的团块缺陷类型。

   2. 检测难点

       Mura类型缺陷,最大的难点在于所处的背景过于复杂,使采用普通的阈值+形态学方法在此处常常失灵,还有就是Mura缺陷的灰度范围和背景中复杂纹理处于同一灰阶范围,难以通过常规手段分割提取。但是对应一些背景较浅的情况 mean_image + 动态阈值的方法也可以起到意料之外的效果。

二、Halcon官方detect_mura_defects_texture.hdev例子 

1.例子描述

* This example shows how to detect mura defects
* in highly textured images

这个例子展示了如果在高纹理的图像中检测mura类型缺陷

*********************

2.读入第一张图像展示

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

沐细雨如春风

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值