Article Analysis(AA): A Simple Framework for Contrastive Learning of Visual Representations

本文为读文章笔记,受所学所知限制,如有出错,恭请指正。


A Simple Framework for Contrastive Learning of Visual Representations
作者: Ting Chen, Simon Kornblith, Mohammad Norouzi, Geoffrey Hinton

本文提出一种简洁有效的设计的无监督设计,并且以7%的margin刷新了SOTA。

摘要直译:这篇文章提出了SimCLR, 一种简单的、用于视觉表征对比学习的框架。作者们简化了最近刚提出的对比自监督学习算法,并且不需要特别的架构或者J记忆库。为了探究是什么使得对比预测任务能够学习到游泳的表征,作者们系统地研究了该框架的大部分组件。作者们展示出(1)数据增强的组成在定义高效预测任务中具有关键的作用,(2)在表征和对比损失之间引入了一种可学习的非线性变换,该变换能够实质性地提高学习到的表征的质量,(3)相对于监督学习,对比学习能够从更大的batch size和更多的训练中获益。通过组合以上要点,在ImageNet上,作者们的方法能够大大的超过之前用于自监督和半监督的方法。一个用SimCLR学习的自监督表征的线性分类器能够达到76.5%的top-1精度,这是7%的相对提升,超过之前的SOTA, 且与监督模型ResNet-50的性能无异。仅仅1%的标签量用于微调,就能达到85.8%的top-5精度,以少100倍的标签量超过AlexNet。


核心分析

对比学习框架,如下图
在这里插入图片描述
该框架有四个主要模块:
1, 随机数据增强模块,它能够随机地变换任何给定的数据样本,即生成同一样本的两个相关表征, x i ^ \hat{x_i} xi^ x j ^ \hat{x_j} xj^,也就是一个正样本对,如上图。在文章中,顺序应用了3个简单的增强方式,随机剪裁之后,Resize到同一尺寸,接着是随机颜色扰动,随机高斯模糊。特别的是,随机剪裁和颜色扰动的组合对获得好性能至关重要。
2,用于从增强后的数据样本中提取表征向量的神经网络基础编码器(base encoder) f ( ) f() f()。该框架能够无限制的适用不同的网络框架。文章中,作者们采用简单通用的ResNet来计算 h i h_i hi, 即 h i = f ( x i ^ ) = R e s N e t ( x i ^ ) h_i=f(\hat{x_i})=ResNet(\hat{x_i}) hi=f(xi^)=ResNet(xi^), 其中 h i ∈

  • 5
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值