论文地址:A Simple Framework for Contrastive Learning of Visual Representations
模型核心组成
以下四点是模型结构的重点,应该得到我们的关注。
- 随机数据增强:1. 随机裁剪 (random cropping) 2. 随机颜色扭曲 (random color distortion) 3. 随机高斯模糊 (random Gaussian blur)。实验证明前两者的结合对获得优异表现至关重要。
- 基础 encoder,从数据增强对的样本中提取表示向量:ResNet
- 更小的神经网络投影结构 g g g,作用于表示空间
- 对比损失函数