自监督|「SimCLR」对比学习阅读笔记

SimCLR是一种简单的对比学习框架,用于学习视觉表示。它使用随机数据增强,如随机裁剪和颜色扭曲,通过ResNet作为基础encoder。模型结构包括一个较小的投影头,并使用对比损失函数最大化样本对之间的相似度。全局批归一化和适当的数据增强策略对于避免模型泄露和提高特征表示质量至关重要。实验表明,SimCLR在无监督学习中能有效提升模型的性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

论文地址:A Simple Framework for Contrastive Learning of Visual Representations

模型核心组成

以下四点是模型结构的重点,应该得到我们的关注。

  • 随机数据增强:1. 随机裁剪 (random cropping) 2. 随机颜色扭曲 (random color distortion) 3. 随机高斯模糊 (random Gaussian blur)。实验证明前两者的结合对获得优异表现至关重要。
  • 基础 encoder,从数据增强对的样本中提取表示向量:ResNet
  • 更小的神经网络投影结构 g g g,作用于表示空间
  • 对比损失函数

模型结构

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值