目录
题目
给你两个整数,被除数
dividend
和除数divisor
。将两数相除,要求 不使用 乘法、除法和取余运算。整数除法应该向零截断,也就是截去(
truncate
)其小数部分。例如,8.345
将被截断为8
,-2.7335
将被截断至-2
。返回被除数
dividend
除以除数divisor
得到的 商 。
注意:
假设我们的环境只能存储 32 位 有符号整数,其数值范围是 [−231, 231 − 1]
。本题中,如果商 严格大于 231 − 1
,则返回 231 − 1
;如果商 严格小于 -231
,则返回 -231
。
示例 1:
输入: dividend = 10, divisor = 3 输出: 3 解释: 10/3 = 3.33333.. ,向零截断后得到 3 。
示例 2:
输入: dividend = 7, divisor = -3 输出: -2 解释: 7/-3 = -2.33333.. ,向零截断后得到 -2 。
提示:
-231 <= dividend, divisor <= 231 - 1
divisor != 0
if (dividend == 0)return 0; if (divisor == 1)return dividend; if (divisor == -1) { if (dividend > INT_MIN) return -dividend;// 只要不是最小的那个整数,都是直接返回相反数就好啦 return INT_MAX;// 是最小的那个整数,都是直接返回最大值 }
题目解析
这是一个让你不用除法来实现除法的题目
很奇怪,代码中不能直接或者间接的用除法,乘法,以及求余
题目思路
由于还可以用减法以及加法
这时候可以想到小学的知识
除法的本质就是看在被除数中有几个除数
我们可以用减法来依次减去就可以了
代码思路
越界的情况
首先我们要判断给出的值越界的情况
if (dividend == 0)return 0;
if (divisor == 1)return dividend;
if (divisor == -1)
{
if (dividend > INT_MIN) return -dividend;// 只要不是最小的那个整数,都是直接返回相反数就好啦
return INT_MAX;// 是最小的那个整数,都是直接返回最大值
}
数据处理
之后我们判断除数与被除数之间的的符号关系并且记录下来
并且为了方便结算全部取绝对值
long long i = 0;
//判断是否异号
long long sum_1 = (long long)dividend * divisor;
//取绝对值
if (dividend < 0)
dividend = -dividend;
if (divisor < 0)
divisor = -divisor;
注意
这里的long long的数据类型是为了防止给出的数据相乘后越界,并且把其中“i”变量的值记录下来用于返回
减法函数
第一次使用的函数
原来是用这个函数的
while (dividend >= divisor)
{
dividend=dividend-divisor;
i++
}
问题
运行时间可能会慢因为除数是21亿并且除数是2的话要运行10亿次
第二次改良后的代码
while (dividend >= divisor)
{
long long j = 1;
long long sum_3 = divisor;
while (dividend> sum_3 + sum_3)
{
sum_3 = sum_3 + sum_3;
j = j + j;
}
dividend = dividend - sum_3;
i = i + j;
}
这个实现方法就是
如果是144除以2第一步执行的是144-64第二步为80-64第三步为16-16
这样运行步骤会大大降低
处理i的值并且返回
if (sum_1 < 0)
i = -i;
return i;
总代码
可以直接运行的代码
#include <iostream>
using namespace std;
int divide(long long dividend, long long divisor)
{
if (dividend == 0)return 0;
if (divisor == 1)return dividend;
if (divisor == -1)
{
if (dividend > INT_MIN) return -dividend;// 只要不是最小的那个整数,都是直接返回相反数就好啦
return INT_MAX;// 是最小的那个整数,都是直接返回最大值
}
long long i = 0;
//判断是否异号
long long sum_1 = (long long)dividend * divisor;
//取绝对值
if (dividend < 0)
dividend = -dividend;
if (divisor < 0)
divisor = -divisor;
while (dividend >= divisor)
{
long long j = 1;
long long sum_3 = divisor;
while (dividend> sum_3 + sum_3)
{
sum_3 = sum_3 + sum_3;
j = j + j;
}
dividend = dividend - sum_3;
i = i + j;
}
if (sum_1 < 0)
i = -i;
return i;
}
int main()
{
//可改传递的数据
int a = divide(-2147483648, -3);
cout << a << endl;
return 0;
}
力扣的代码
力扣提交的代码
class Solution {
public:
int divide(long long dividend, long long divisor)
{
if (dividend == 0)return 0;
if (divisor == 1)return dividend;
if (divisor == -1)
{
if (dividend > INT_MIN) return -dividend;// 只要不是最小的那个整数,都是直接返回相反数就好啦
return INT_MAX;// 是最小的那个整数,都是直接返回最大值
}
long long i = 0;
//判断是否异号
long long sum_1 = (long long)dividend * divisor;
//取绝对值
if (dividend < 0)
dividend = -dividend;
if (divisor < 0)
divisor = -divisor;
while (dividend >= divisor)
{
long long j = 1;
long long sum_3 = divisor;
while (dividend> sum_3 + sum_3)
{
sum_3 = sum_3 + sum_3;
j = j + j;
}
dividend = dividend - sum_3;
i = i + j;
}
if (sum_1 < 0)
i = -i;
return i;
}
};
注意
代码不难,注意越界的数据越界的问题