给定两个整数,被除数 dividend 和除数 divisor。将两数相除,要求不使用乘法、除法和 mod 运算符。
返回被除数 dividend 除以除数 divisor 得到的商。
示例 1:
输入: dividend = 10, divisor = 3
输出: 3
示例 2:
输入: dividend = 7, divisor = -3
输出: -2
说明:
被除数和除数均为 32 位有符号整数。
除数不为 0。
假设我们的环境只能存储 32 位有符号整数,其数值范围是 [−231, 231 − 1]。本题中,如果除法结果溢出,则返回 231 − 1。
法一:
class Solution {
public:
int divide(int dividend, int divisor)
{
long res = 0;
long a = labs(dividend), b = labs(divisor);
while(a >= b)
{
long times = 1, temp = b; //times为被除数增大的倍数,temp为除数的中间变量
while(a >= (temp << 1))
{//temp 举个例子 23=3*2^3
times <<= 1; //左移一位表示增大一倍 记录下2^2
temp <<= 1;//3*2^2
}
res += times;//记录下来,2^2
a -= temp;//23-3*2^2
}
res = ((dividend > 0) ^ (divisor > 0)) ? -res : res; //异或操作判断符号
return (res > INT_MAX || res < INT_MIN) ? INT_MAX : res;
}
};
法2:
class Solution {
public:
int divide(int dividend, int divisor) {
if(divisor == 0)
return 0;
//最终符号的正负
bool flag = false;
// 转换成long 防止溢出
long d1 = dividend;
long d2 = divisor;
//判定符号
if(( d2<0 && d1 >0 ) || (d2>0 && d1 <0))
flag = true;
//把两个数都转为正数
if(d2 < 0){
d2 *= -1;
}
if(d1 <0)
d1 *= -1;
//当前者比后者小,直接返回0
if(d1 < d2)
return 0;
// 偷鸡摸狗~~
long result = d1 / d2;
// 修正输出的符号
result = flag? (-1*result):result;
//溢出处理
if(result> INT_MAX || result <INT_MIN)
result = INT_MAX;
return result;
}
};