昇思MindSpore学习笔记4-01生成式--CycleGAN图像风格迁移互换

摘要:

        记录了昇思MindSpore AI框架用循环对抗生成网络模型CycleGAN实现图像匹配的方法、步骤。包括环境准备、数据集下载、数据加载和预处理、构建生成器和判别器、优化、模型训练和推理等。

1.模型介绍

1.1模型简介

CycleGAN(Cycle Generative Adversarial Network)

循环对抗生成网络模型

        没有配对示例

        学习将图像从源域 X 转换到目标域 Y 的方法

应用领域

        域迁移Domain Adaptation(图像风格迁移)

同类模型Pix2Pix

        要求训练数据成对

        现实很难找到

1.2模型结构

CycleGAN 网络

        两个镜像对称的GAN网络

结构图

        

以苹果和橘子为例

X          苹果

Y         橘子

F          将苹果橘子的变换生成器

G         橘子苹果的变换生成器

DX       苹果判别器

DY       橘子判别器

模型结果

        苹果变橘子模型权重

        橘子变苹果模型权重

        苹果变橘子产生新图像

        橘子变苹果产生新图像

模型损失函数

        循环一致损失(Cycle Consistency Loss)最重要

        循环损失计算过程如图所示:

        苹果图片 x --> 生成器G  --> 伪橘子\AA\widehat{Y}

           伪橘子\widehat{Y} --> 生成器F  --> 苹果风\widehat{x}

        苹果图片x   -   苹果风\widehat{x} --> 苹果循环一致损失

反之亦然

        橘子图片 y --> 生成器 F  --> 伪苹果\widehat{x}

           伪苹果\widehat{x} --> 生成器G  --> 橘子风\widehat{Y}

        橘子图片y   -   橘子风\widehat{Y} --> 橘子循环一致损失

2.数据集

数据集图片源于ImageNet

17个数据包

使用其中苹果橘子部分

图像缩放统一像素256×256

训练

        苹果图片996张

        橘子图片1020张

测试

        苹果图片266张

        橘子图片248张

预处理

        随机裁剪

        水平随机翻转

        归一化

        结果数据格式MindRecord

2.1数据集下载

 download 接口下载

自动解压到当前目录

需要使用download 包

         pip install download

%%capture captured_output
# 实验环境已经预装了mindspore==2.2.14,如需更换mindspore版本,可更改下面mindspore的版本号
!pip uninstall mindspore -y
!pip install -i https://pypi.mirrors.ustc.edu.cn/simple mindspore==2.2.14
# 查看当前 mindspore 版本
!pip show mindspore

输出:

Name: mindspore
Version: 2.2.14
Summary: MindSpore is a new open source deep learning training/inference framework that could be used for mobile, edge and cloud scenarios.
Home-page: https://www.mindspore.cn
Author: The MindSpore Authors
Author-email: contact@mindspore.cn
License: Apache 2.0
Location: /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages
Requires: asttokens, astunparse, numpy, packaging, pillow, protobuf, psutil, scipy
Required-by: 

from download import download
​
url = "https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/models/application/CycleGAN_apple2orange.zip"
​
download(url, ".", kind="zip", replace=True)

输出:

Downloading data from https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/models/application/CycleGAN_apple2orange.zip (466.8 MB)

file_sizes: 100%|█████████████████████████████| 489M/489M [00:01<00:00, 248MB/s]
Extracting zip file...
Successfully downloaded / unzipped to .

2.2数据集加载

读取解析数据集

MindSpore.dataset.MindDataset接口

from mindspore.dataset import MindDataset
​
# 读取MindRecord格式数据
name_mr = "./CycleGAN_apple2orange/apple2orange_train.mindrecord"
data = MindDataset(dataset_files=name_mr)
print("Datasize: ", data.get_dataset_size())
​
batch_size = 1
dataset = data.batch(batch_size)
datasize = dataset.get_dataset_size()

输出:

Datasize:  1019

2.3可视化

数据转换成字典迭代器

        create_dict_iterator 函数

训练数据

        matplotlib 模块可视化部分

import numpy as np
import matplotlib.pyplot as plt
​
mean = 0.5 * 255
std = 0.5 * 255
​
plt.figure(figsize=(12, 5), dpi=60)
for i, data in enumerate(dataset.create_dict_iterator()):
    if i < 5:
        show_images_a = data["image_A"].asnumpy()
        show_images_b = data["image_B"].asnumpy()
​
        plt.subplot(2, 5, i+1)
        show_images_a = (show_images_a[0] * std + mean).astype(np.uint8).transpose((1, 2, 0))
        plt.imshow(show_images_a)
        plt.axis("off")
​
        plt.subplot(2, 5, i+6)
        show_images_b = (show_images_b[0] * std + mean).astype(np.uint8).transpose((1, 2, 0))
        plt.imshow(show_images_b)
        plt.axis("off")
    else:
        break
plt.show()

输出:

3.构建生成器

生成器模型结构参考ResNet

128×128图片用6个残差块相连

256×256以上的图片用9个残差块相连

超参数 n_layers控制残差块数

生成器结构如下所示:

模型结构代码:

import mindspore.nn as nn
import mindspore.ops as ops
from mindspore.common.initializer import Normal
​
weight_init = Normal(sigma=0.02)
​
class ConvNormReLU(nn.Cell):
def __init__(self, input_channel, out_planes, kernel_size=4, stride=2, alpha=0.2, 
norm_mode='instance',
                 pad_mode='CONSTANT', use_relu=True, padding=None, transpose=False):
        super(ConvNormReLU, self).__init__()
        norm = nn.BatchNorm2d(out_planes)
        if norm_mode == 'instance':
            norm = nn.BatchNorm2d(out_planes, affine=False)
        has_bias = (norm_mode == 'instance')
        if padding is None:
            padding = (kernel_size - 1) // 2
        if pad_mode == 'CONSTANT':
            if transpose:
                conv = nn.Conv2dTranspose(input_channel, out_planes, kernel_size, stride, 
pad_mode='same',
                                          has_bias=has_bias, weight_init=weight_init)
            else:
                conv = nn.Conv2d(input_channel, out_planes, kernel_size, stride, 
 pad_mode='pad',
                                 has_bias=has_bias, padding=padding, weight_init=weight_init)
            layers = [conv, norm]
        else:
            paddings = ((0, 0), (0, 0), (padding, padding), (padding, padding))
            pad = nn.Pad(paddings=paddings, mode=pad_mode)
            if transpose:
                conv = nn.Conv2dTranspose(input_channel, out_planes, kernel_size, stride,
pad_mode='pad',
                                          has_bias=has_bias, weight_init=weight_init)
            else:
                conv = nn.Conv2d(input_channel, out_planes, kernel_size, stride, 
 pad_mode='pad',
                                 has_bias=has_bias, weight_init=weight_init)
            layers = [pad, conv, norm]
        if use_relu:
            relu = nn.ReLU()
            if alpha > 0:
                relu = nn.LeakyReLU(alpha)
            layers.append(relu)
        self.features = nn.SequentialCell(layers)
​
    def construct(self, x):
        output = self.features(x)
        return output
​
​
class ResidualBlock(nn.Cell):
    def __init__(self, dim, norm_mode='instance', dropout=False, pad_mode="CONSTANT"):
        super(ResidualBlock, self).__init__()
        self.conv1 = ConvNormReLU(dim, dim, 3, 1, 0, norm_mode, pad_mode)
        self.conv2 = ConvNormReLU(dim, dim, 3, 1, 0, norm_mode, pad_mode, use_relu=False)
        self.dropout = dropout
        if dropout:
            self.dropout = nn.Dropout(p=0.5)
​
    def construct(self, x):
        out = self.conv1(x)
        if self.dropout:
            out = self.dropout(out)
        out = self.conv2(out)
        return x + out
​
​
class ResNetGenerator(nn.Cell):
    def __init__(self, input_channel=3, output_channel=64, n_layers=9, alpha=0.2, norm_mode='instance', dropout=False,
                 pad_mode="CONSTANT"):
        super(ResNetGenerator, self).__init__()
        self.conv_in = ConvNormReLU(input_channel, output_channel, 7, 1, alpha, norm_mode, 
pad_mode=pad_mode)
        self.down_1 = ConvNormReLU(output_channel, output_channel * 2, 3, 2, alpha, norm_mode)
        self.down_2 = ConvNormReLU(output_channel * 2, output_channel * 4, 3, 2, alpha, norm_mode)
        layers = [ResidualBlock(output_channel * 4, norm_mode, dropout=dropout, 
pad_mode=pad_mode)] * n_layers
        self.residuals = nn.SequentialCell(layers)
        self.up_2 = ConvNormReLU(output_channel * 4, output_channel * 2, 3, 2, alpha, norm_mode,
transpose=True)
        self.up_1 = ConvNormReLU(output_channel * 2, output_channel, 3, 2, alpha, norm_mode,
 transpose=True)
        if pad_mode == "CONSTANT":
            self.conv_out = nn.Conv2d(output_channel, 3, kernel_size=7, stride=1,
pad_mode='pad',
                                      padding=3, weight_init=weight_init)
        else:
            pad = nn.Pad(paddings=((0, 0), (0, 0), (3, 3), (3, 3)), mode=pad_mode)
            conv = nn.Conv2d(output_channel, 3, kernel_size=7, stride=1, pad_mode='pad', 
 weight_init=weight_init)
            self.conv_out = nn.SequentialCell([pad, conv])
​
    def construct(self, x):
        x = self.conv_in(x)
        x = self.down_1(x)
        x = self.down_2(x)
        x = self.residuals(x)
        x = self.up_2(x)
        x = self.up_1(x)
        output = self.conv_out(x)
        return ops.tanh(output)
​
# 实例化生成器
net_rg_a = ResNetGenerator()
net_rg_a.update_parameters_name('net_rg_a.')
​
net_rg_b = ResNetGenerator()
net_rg_b.update_parameters_name('net_rg_b.')

4.构建判别器

判别器是二分类网络模型PatchGANs

        判定图像的真实概率

        Patch大小70x70

        处理流程

                Conv2d

                BatchNorm2d

                LeakyReLU 

                Sigmoid激活函数

                结果为真实概率

# 定义判别器
class Discriminator(nn.Cell):
def __init__(self, input_channel=3, output_channel=64, n_layers=3, alpha=0.2, 
norm_mode='instance'):
        super(Discriminator, self).__init__()
        kernel_size = 4
        layers = [nn.Conv2d(input_channel, output_channel, kernel_size, 2, 
pad_mode='pad', padding=1, weight_init=weight_init), nn.LeakyReLU(alpha)]
        nf_mult = output_channel
        for i in range(1, n_layers):
            nf_mult_prev = nf_mult
            nf_mult = min(2 ** i, 8) * output_channel
            layers.append(ConvNormReLU(nf_mult_prev, nf_mult, kernel_size, 2, alpha, norm_mode,
 padding=1))
        nf_mult_prev = nf_mult
        nf_mult = min(2 ** n_layers, 8) * output_channel
        layers.append(ConvNormReLU(nf_mult_prev, nf_mult, kernel_size, 1, alpha, norm_mode, 
 padding=1))
        layers.append(nn.Conv2d(nf_mult, 1, kernel_size, 1, pad_mode='pad', padding=1, 
weight_init=weight_init))
        self.features = nn.SequentialCell(layers)
​
    def construct(self, x):
        output = self.features(x)
        return output
​
# 判别器初始化
net_d_a = Discriminator()
net_d_a.update_parameters_name('net_d_a.')
​
net_d_b = Discriminator()
net_d_b.update_parameters_name('net_d_b.')

5.优化器和损失函数

设置优化器

生成器G 及其判别器DY ,目标损失函数定义为:

生成器G  生成Y相似的图像 G(x) 

判别器DY  区分翻译样本 G(x)和真实样本y

生成器的目标最小化损失函数来对抗判别器​​​​​​​

正向循环一致性

        x→G(x)→F(G(x))≈x

        X的每个图像x ,图像转换周期应能够将x带回原始图像

        y→F(y)→G(F(y))≈y

        Y的每个图像y ,图像转换周期应能够将y带回原始图像

循环一致损失函数定义如下:

循环一致损失能够保证重建图像F(G(x))与输入图像 x 紧密匹配

# 构建生成器,判别器优化器
optimizer_rg_a = nn.Adam(net_rg_a.trainable_params(), learning_rate=0.0002, beta1=0.5)
optimizer_rg_b = nn.Adam(net_rg_b.trainable_params(), learning_rate=0.0002, beta1=0.5)
​
optimizer_d_a = nn.Adam(net_d_a.trainable_params(), learning_rate=0.0002, beta1=0.5)
optimizer_d_b = nn.Adam(net_d_b.trainable_params(), learning_rate=0.0002, beta1=0.5)
​
# GAN网络损失函数,这里最后一层不使用sigmoid函数
loss_fn = nn.MSELoss(reduction='mean')
l1_loss = nn.L1Loss("mean")
​
def gan_loss(predict, target):
    target = ops.ones_like(predict) * target
    loss = loss_fn(predict, target)
    return loss

6.前向计算

搭建模型前向计算损失的过程

减少模型振荡

使用生成器生成图像的历史数据更新鉴别器

image_pool 函数

        保留图像缓冲区

                存储生成器之前生成的50个图像

import mindspore as ms
​
# 前向计算
​
def generator(img_a, img_b):
    fake_a = net_rg_b(img_b)
    fake_b = net_rg_a(img_a)
    rec_a = net_rg_b(fake_b)
    rec_b = net_rg_a(fake_a)
    identity_a = net_rg_b(img_a)
    identity_b = net_rg_a(img_b)
    return fake_a, fake_b, rec_a, rec_b, identity_a, identity_b
​
lambda_a = 10.0
lambda_b = 10.0
lambda_idt = 0.5
​
def generator_forward(img_a, img_b):
    true = Tensor(True, dtype.bool_)
    fake_a, fake_b, rec_a, rec_b, identity_a, identity_b = generator(img_a, img_b)
    loss_g_a = gan_loss(net_d_b(fake_b), true)
    loss_g_b = gan_loss(net_d_a(fake_a), true)
    loss_c_a = l1_loss(rec_a, img_a) * lambda_a
    loss_c_b = l1_loss(rec_b, img_b) * lambda_b
    loss_idt_a = l1_loss(identity_a, img_a) * lambda_a * lambda_idt
    loss_idt_b = l1_loss(identity_b, img_b) * lambda_b * lambda_idt
    loss_g = loss_g_a + loss_g_b + loss_c_a + loss_c_b + loss_idt_a + loss_idt_b
    return fake_a, fake_b, loss_g, loss_g_a, loss_g_b, loss_c_a, loss_c_b, loss_idt_a, loss_idt_b
​
def generator_forward_grad(img_a, img_b):
    _, _, loss_g, _, _, _, _, _, _ = generator_forward(img_a, img_b)
    return loss_g
​
def discriminator_forward(img_a, img_b, fake_a, fake_b):
    false = Tensor(False, dtype.bool_)
    true = Tensor(True, dtype.bool_)
    d_fake_a = net_d_a(fake_a)
    d_img_a = net_d_a(img_a)
    d_fake_b = net_d_b(fake_b)
    d_img_b = net_d_b(img_b)
    loss_d_a = gan_loss(d_fake_a, false) + gan_loss(d_img_a, true)
    loss_d_b = gan_loss(d_fake_b, false) + gan_loss(d_img_b, true)
    loss_d = (loss_d_a + loss_d_b) * 0.5
    return loss_d
​
def discriminator_forward_a(img_a, fake_a):
    false = Tensor(False, dtype.bool_)
    true = Tensor(True, dtype.bool_)
    d_fake_a = net_d_a(fake_a)
    d_img_a = net_d_a(img_a)
    loss_d_a = gan_loss(d_fake_a, false) + gan_loss(d_img_a, true)
    return loss_d_a
​
def discriminator_forward_b(img_b, fake_b):
    false = Tensor(False, dtype.bool_)
    true = Tensor(True, dtype.bool_)
    d_fake_b = net_d_b(fake_b)
    d_img_b = net_d_b(img_b)
    loss_d_b = gan_loss(d_fake_b, false) + gan_loss(d_img_b, true)
    return loss_d_b
​
# 保留了一个图像缓冲区,用来存储之前创建的50个图像
pool_size = 50
def image_pool(images):
    num_imgs = 0
    image1 = []
    if isinstance(images, Tensor):
        images = images.asnumpy()
    return_images = []
    for image in images:
        if num_imgs < pool_size:
            num_imgs = num_imgs + 1
            image1.append(image)
            return_images.append(image)
        else:
            if random.uniform(0, 1) > 0.5:
                random_id = random.randint(0, pool_size - 1)
​
                tmp = image1[random_id].copy()
                image1[random_id] = image
                return_images.append(tmp)
​
            else:
                return_images.append(image)
    output = Tensor(return_images, ms.float32)
    if output.ndim != 4:
        raise ValueError("img should be 4d, but get shape {}".format(output.shape))
    return output

7.计算梯度和反向传播

梯度计算代码:

from mindspore import value_and_grad
​
# 实例化求梯度的方法
grad_g_a = value_and_grad(generator_forward_grad, None, net_rg_a.trainable_params())
grad_g_b = value_and_grad(generator_forward_grad, None, net_rg_b.trainable_params())
​
grad_d_a = value_and_grad(discriminator_forward_a, None, net_d_a.trainable_params())
grad_d_b = value_and_grad(discriminator_forward_b, None, net_d_b.trainable_params())
​
# 计算生成器的梯度,反向传播更新参数
def train_step_g(img_a, img_b):
    net_d_a.set_grad(False)
    net_d_b.set_grad(False)
​
    fake_a, fake_b, lg, lga, lgb, lca, lcb, lia, lib = generator_forward(img_a, img_b)
​
    _, grads_g_a = grad_g_a(img_a, img_b)
    _, grads_g_b = grad_g_b(img_a, img_b)
    optimizer_rg_a(grads_g_a)
    optimizer_rg_b(grads_g_b)
​
    return fake_a, fake_b, lg, lga, lgb, lca, lcb, lia, lib
​
# 计算判别器的梯度,反向传播更新参数
def train_step_d(img_a, img_b, fake_a, fake_b):
    net_d_a.set_grad(True)
    net_d_b.set_grad(True)
​
    loss_d_a, grads_d_a = grad_d_a(img_a, fake_a)
    loss_d_b, grads_d_b = grad_d_b(img_b, fake_b)
​
    loss_d = (loss_d_a + loss_d_b) * 0.5
​
    optimizer_d_a(grads_d_a)
    optimizer_d_b(grads_d_b)
​
    return loss_d

8.模型训练

训练分为两个主要部分

训练判别器

        提高判别图像真伪的概率

        最小化

训练生成器

        最小化

        产生更好的虚假图像

判别器损失函数

        论文采用最小二乘损失代替负对数似然目标。

生成器和判别器训练过程:

import os
import time
import random
import numpy as np
from PIL import Image
from mindspore import Tensor, save_checkpoint
from mindspore import dtype
​
# 由于时间原因,epochs设置为1,可根据需求进行调整
epochs = 1
save_step_num = 80
save_checkpoint_epochs = 1
save_ckpt_dir = './train_ckpt_outputs/'
​
print('Start training!')
​
for epoch in range(epochs):
    g_loss = []
    d_loss = []
    start_time_e = time.time()
    for step, data in enumerate(dataset.create_dict_iterator()):
        start_time_s = time.time()
        img_a = data["image_A"]
        img_b = data["image_B"]
        res_g = train_step_g(img_a, img_b)
        fake_a = res_g[0]
        fake_b = res_g[1]
​
        res_d = train_step_d(img_a, img_b, image_pool(fake_a), image_pool(fake_b))
        loss_d = float(res_d.asnumpy())
        step_time = time.time() - start_time_s
​
        res = []
        for item in res_g[2:]:
            res.append(float(item.asnumpy()))
        g_loss.append(res[0])
        d_loss.append(loss_d)
​
        if step % save_step_num == 0:
            print(f"Epoch:[{int(epoch + 1):>3d}/{int(epochs):>3d}], "
                  f"step:[{int(step):>4d}/{int(datasize):>4d}], "
                  f"time:{step_time:>3f}s,\n"
                  f"loss_g:{res[0]:.2f}, loss_d:{loss_d:.2f}, "
                  f"loss_g_a: {res[1]:.2f}, loss_g_b: {res[2]:.2f}, "
                  f"loss_c_a: {res[3]:.2f}, loss_c_b: {res[4]:.2f}, "
                  f"loss_idt_a: {res[5]:.2f}, loss_idt_b: {res[6]:.2f}")
​
    epoch_cost = time.time() - start_time_e
    per_step_time = epoch_cost / datasize
    mean_loss_d, mean_loss_g = sum(d_loss) / datasize, sum(g_loss) / datasize
​
    print(f"Epoch:[{int(epoch + 1):>3d}/{int(epochs):>3d}], "
          f"epoch time:{epoch_cost:.2f}s, per step time:{per_step_time:.2f}, "
          f"mean_g_loss:{mean_loss_g:.2f}, mean_d_loss:{mean_loss_d :.2f}")
​
    if epoch % save_checkpoint_epochs == 0:
        os.makedirs(save_ckpt_dir, exist_ok=True)
        save_checkpoint(net_rg_a, os.path.join(save_ckpt_dir, f"g_a_{epoch}.ckpt"))
        save_checkpoint(net_rg_b, os.path.join(save_ckpt_dir, f"g_b_{epoch}.ckpt"))
        save_checkpoint(net_d_a, os.path.join(save_ckpt_dir, f"d_a_{epoch}.ckpt"))
        save_checkpoint(net_d_b, os.path.join(save_ckpt_dir, f"d_b_{epoch}.ckpt"))
​
print('End of training!')

输出:

Start training!
Epoch:[  1/  1], step:[   0/1019], time:140.084908s,
loss_g:20.59, loss_d:1.09, loss_g_a: 1.03, loss_g_b: 1.07, loss_c_a: 5.08, loss_c_b: 7.28, loss_idt_a: 2.55, loss_idt_b: 3.59
Epoch:[  1/  1], step:[  80/1019], time:0.459862s,
loss_g:9.79, loss_d:0.35, loss_g_a: 0.60, loss_g_b: 0.32, loss_c_a: 2.05, loss_c_b: 3.97, loss_idt_a: 1.03, loss_idt_b: 1.80
Epoch:[  1/  1], step:[ 160/1019], time:0.450440s,
loss_g:10.24, loss_d:0.38, loss_g_a: 0.54, loss_g_b: 0.65, loss_c_a: 3.35, loss_c_b: 2.68, loss_idt_a: 1.68, loss_idt_b: 1.33
Epoch:[  1/  1], step:[ 240/1019], time:0.450548s,
loss_g:10.80, loss_d:0.36, loss_g_a: 0.32, loss_g_b: 0.43, loss_c_a: 3.88, loss_c_b: 3.42, loss_idt_a: 1.33, loss_idt_b: 1.42
Epoch:[  1/  1], step:[ 320/1019], time:0.501738s,
loss_g:7.80, loss_d:0.30, loss_g_a: 0.30, loss_g_b: 0.41, loss_c_a: 1.57, loss_c_b: 3.54, loss_idt_a: 0.48, loss_idt_b: 1.50
Epoch:[  1/  1], step:[ 400/1019], time:0.459365s,
loss_g:6.60, loss_d:0.70, loss_g_a: 0.29, loss_g_b: 0.28, loss_c_a: 1.60, loss_c_b: 2.48, loss_idt_a: 0.88, loss_idt_b: 1.06
Epoch:[  1/  1], step:[ 480/1019], time:0.448666s,
loss_g:4.93, loss_d:0.62, loss_g_a: 0.16, loss_g_b: 0.59, loss_c_a: 1.27, loss_c_b: 1.73, loss_idt_a: 0.46, loss_idt_b: 0.72
Epoch:[  1/  1], step:[ 560/1019], time:0.469116s,
loss_g:5.46, loss_d:0.43, loss_g_a: 0.37, loss_g_b: 0.59, loss_c_a: 1.59, loss_c_b: 1.38, loss_idt_a: 0.94, loss_idt_b: 0.60
Epoch:[  1/  1], step:[ 640/1019], time:0.453548s,
loss_g:5.32, loss_d:0.34, loss_g_a: 0.44, loss_g_b: 0.40, loss_c_a: 1.52, loss_c_b: 1.57, loss_idt_a: 0.62, loss_idt_b: 0.77
Epoch:[  1/  1], step:[ 720/1019], time:0.460250s,
loss_g:5.53, loss_d:0.46, loss_g_a: 0.49, loss_g_b: 0.20, loss_c_a: 1.64, loss_c_b: 1.90, loss_idt_a: 0.64, loss_idt_b: 0.66
Epoch:[  1/  1], step:[ 800/1019], time:0.460121s,
loss_g:4.58, loss_d:0.29, loss_g_a: 0.37, loss_g_b: 0.69, loss_c_a: 1.34, loss_c_b: 1.16, loss_idt_a: 0.60, loss_idt_b: 0.42
Epoch:[  1/  1], step:[ 880/1019], time:0.453644s,
loss_g:6.31, loss_d:0.44, loss_g_a: 0.37, loss_g_b: 0.18, loss_c_a: 2.37, loss_c_b: 1.63, loss_idt_a: 1.09, loss_idt_b: 0.67
Epoch:[  1/  1], step:[ 960/1019], time:0.449156s,
loss_g:3.81, loss_d:0.26, loss_g_a: 0.42, loss_g_b: 0.35, loss_c_a: 0.73, loss_c_b: 1.38, loss_idt_a: 0.33, loss_idt_b: 0.60
Epoch:[  1/  1], epoch time:609.15s, per step time:0.60, mean_g_loss:7.00, mean_d_loss:0.45
End of training!
CPU times: user 19min 48s, sys: 5min 15s, total: 25min 3s
Wall time: 10min 10s

9.模型推理

加载生成器网络模型参数文件

对原图进行风格迁移

结果

        第一行  原图

        第二行  对应生成的结果图

%%time
import os
from PIL import Image
import mindspore.dataset as ds
import mindspore.dataset.vision as vision
from mindspore import load_checkpoint, load_param_into_net
​
# 加载权重文件
def load_ckpt(net, ckpt_dir):
    param_GA = load_checkpoint(ckpt_dir)
    load_param_into_net(net, param_GA)
​
g_a_ckpt = './CycleGAN_apple2orange/ckpt/g_a.ckpt'
g_b_ckpt = './CycleGAN_apple2orange/ckpt/g_b.ckpt'
​
load_ckpt(net_rg_a, g_a_ckpt)
load_ckpt(net_rg_b, g_b_ckpt)
​
# 图片推理
fig = plt.figure(figsize=(11, 2.5), dpi=100)
def eval_data(dir_path, net, a):
​
    def read_img():
        for dir in os.listdir(dir_path):
            path = os.path.join(dir_path, dir)
            img = Image.open(path).convert('RGB')
            yield img, dir
​
    dataset = ds.GeneratorDataset(read_img, column_names=["image", "image_name"])
    trans = [vision.Resize((256, 256)), vision.Normalize(mean=[0.5 * 255] * 3, std=[0.5 * 255] * 3), vision.HWC2CHW()]
    dataset = dataset.map(operations=trans, input_columns=["image"])
    dataset = dataset.batch(1)
    for i, data in enumerate(dataset.create_dict_iterator()):
        img = data["image"]
        fake = net(img)
        fake = (fake[0] * 0.5 * 255 + 0.5 * 255).astype(np.uint8).transpose((1, 2, 0))
        img = (img[0] * 0.5 * 255 + 0.5 * 255).astype(np.uint8).transpose((1, 2, 0))
​
        fig.add_subplot(2, 8, i+1+a)
        plt.axis("off")
        plt.imshow(img.asnumpy())
​
        fig.add_subplot(2, 8, i+9+a)
        plt.axis("off")
        plt.imshow(fake.asnumpy())
​
eval_data('./CycleGAN_apple2orange/predict/apple', net_rg_a, 0)
eval_data('./CycleGAN_apple2orange/predict/orange', net_rg_b, 4)
plt.show()

输出:\

​​​​​​​

CPU times: user 2.31 s, sys: 242 ms, total: 2.55 s
Wall time: 11 s

CPU times: user 2.31 s, sys: 242 ms, total: 2.55 s

Wall time: 11 s

  • 16
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

muren

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值