http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=995
题目大意:
有一种由彩色珠子组成的项链,每个珠子的两半由不同的颜色组成,相邻的两个珠子在接触的地方颜色相同。现在有一些零碎的珠子,需要你确认是否可以复原,并且输出其中一种复原方案。
思路:
第一道欧拉回路的题。
思路很巧妙,把每个珠子的颜色看成点(注意是颜色!)而珠子则看成连接这两个点的边。
那么就转化为求欧拉回路了~
#include<cstdio>
#include<cstring>
#include<vector>
using namespace std;
const int MAXN=52;
int map[MAXN][MAXN],d[MAXN];
struct edge
{
int from,to;
edge(int from,int to): from(from),to(to){}
};
vector <edge> ans;
void euler(int cur)
{
for(int i=1;i<MAXN;i++)
{
if(map[cur][i])
{
map[cur][i]--; map[i][cur]--;
euler(i);
ans.push_back(edge(cur,i));
}
}
}
int main()
{
int T;
scanf("%d",&T);
for(int ri=1;ri<=T;ri++)
{
memset(map,0,sizeof(map));
memset(d,0,sizeof(d));
int n,start;
scanf("%d",&n);
for(int i=1;i<=n;i++)
{
int c1,c2;
scanf("%d%d",&c1,&c2);
map[c1][c2]++; map[c2][c1]++;
d[c1]++; d[c2]++;
start=c1;
}
bool ok=true;
for(int i=1;i<MAXN;i++)
{
if(d[i] & 1){// 无向图为欧拉图的充要条件是没有度为奇数的顶点。
ok=false;
break;
}
}
if(ok)
{
ans.clear();
euler(start);
if(ans.size()!=n || ans[0].to!=ans[n-1].from)
ok=false;
}
if(ri!=1)
printf("\n");
printf("Case #%d\n", ri);
if(!ok)
printf("some beads may be lost\n");
else
{
for(int i=n-1;i>=0;i--)
printf("%d %d\n", ans[i].from, ans[i].to);
}
}
return 0;
}