机器学习实战(二)决策树

一、优缺点

1、优点:计算复杂度不高,输出结果易于理解,对中间值的确实不敏感,可以处理不相关的特征数据
2、缺点:可能会产生过度匹配问题
3、使用数据类型:数值型和标称型

二、决策树的一般流程

  1. 收集数据
  2. 准备数据
  3. 分析数据
  4. 训练算法
  5. 测试算法
  6. 使用算法  

三、实例

# -*- coding: utf-8 -*-
# @Time    : 19-4-2 下午6:44
# @Author  : MRB
# @File    : trees.py
# @Software: PyCharm Community Edition

from math import log
import operator


#创建一个数据集合
def createDataSet():
    dataSet = [[1, 1, 'yes'],
               [1, 1, 'yes'],
               [1, 0, 'no'],
               [0, 1, 'no'],
               [0, 1, 'no']]
    labels = ['no surfacing','flippers']
    #change to discrete values
    return dataSet, labels

'''
计算给定数据的香农熵

'''
def calcShannonEnt(dataSet):
    numEntris = len(dataSet)
    labelCounts = {}

    for featVec in dataSet:
        correntLabel = featVec[-1]
        if correntLabel not in labelCounts.keys():
            labelCounts[correntLabel] = 0
        labelCounts[correntLabel] += 1
    shannonEnt = 0.0
    for key in labelCounts:
        prob = float(labelCounts[key])/numEntris
        shannonEnt -= prob * log(prob,2)
    return shannonEnt

'''
按照给定特征划分数据集
'''
def splitDataSet(dataSet,axis,value):
    retDataSet = []
    for featVec in dataSet:
        if featVec[axis] == value:
            reducedFeatVec = featVec[:axis]
            reducedFeatVec.extend(featVec[axis+1:])
            retDataSet.append(reducedFeatVec)
    return retDataSet

'''
选择最好的数据集划分方式
该函数实现选取特征,划分数据集,计算得到最好的划分数据特征
'''
def chooseBestFeatureToSplit(dataSet):
    numFeatures  = len(dataSet[0]) - 1 #特征数量
    bestEntropy = calcShannonEnt(dataSet) #计算熵
    bestInfoGain = 0.0
    bestFeture = -1
    for i in range(numFeatures):
        featList = [example[i] for example in dataSet]
        uniqueVals = set(featList) #第i个特征的取值
        newEntropy = 0.0
        for value in uniqueVals:
            subDataSet = splitDataSet(dataSet,i,value)
            prob = len(subDataSet)/float(len(dataSet))
            newEntropy += prob*calcShannonEnt(subDataSet)
        infoGain = bestEntropy- newEntropy
        if infoGain > bestInfoGain:
            bestInfoGain = infoGain
            bestFeture = i
        return bestFeture

'''
投票表决
'''
def majorityCnt(classList):
    classCount = {}
    for vote in classList:
        if vote not in classCount.keys():
            classCount[vote] = 0
        classCount[vote] += 1
        sortedClassCount = sorted(classCount.items(),key=operator.itemgetter(1),reverse=True) #排序
        return sortedClassCount[0][0]

'''
创建决策树
'''
def createTree(dataSet,labels):
    classList = [example[-1] for example in dataSet ]
    if classList.count(classList[0]) == len(classList): #
        return classList[0]
    if len(dataSet[0]) == 1:
        return majorityCnt(classList)
    bestFeat = chooseBestFeatureToSplit(dataSet)
    bestFeatLabel = labels[bestFeat]
    myTree = {bestFeatLabel:{}}
    del(labels[bestFeat])
    featValues = [example[bestFeat] for example in dataSet]
    uniqueVals = set(featValues)
    for value in uniqueVals:
        subLabels = labels[:]
        myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet,bestFeat,value),subLabels)
    return myTree

'''
使用决策树的分类函数(递归函数)
'''
def classify(inputTree,featLabels,testVec):
    firstStr = list(inputTree.keys())[0]
    secondDict = inputTree[firstStr]
    featIndex = featLabels.index(firstStr)
    for key in secondDict.keys():
        if testVec[featIndex] == key:
            if type(secondDict[key]).__name__=='dict':
                classLabel = classify(secondDict[key],featLabels,testVec)
            else:
                classLabel = secondDict[key]
    return classLabel


if __name__ == '__main__':
    pass
    #1、测试求香农熵
    '''
    熵越高,表示混合的数据也越多
    '''
    # dataSet,labels = createDataSet()
    # # dataSet[0][-1] ='maybe'
    # shannonEnt = calcShannonEnt(dataSet)
    # print(shannonEnt)

    #2、划分数据集
    # dataSet, labels = createDataSet()
    # result = chooseBestFeatureToSplit(dataSet)
    # print(result)

    #3、创建树
    # dataSet, labels = createDataSet()
    # result = createTree(dataSet,labels)
    # print(result)

    #4、使用决策树的分类函数
    import copy
    dataSet, labels = createDataSet()
    _labels = copy.deepcopy(labels) #采用深拷贝
    mytree = createTree(dataSet, _labels)
    #预测
    result = classify(mytree,labels,[1,1])
    print(result)
    result = classify(mytree, labels, [0, 1])
    print(result)

四 、分析

4.1 ID3算法

ID3是基本的决策树构建算法,作为决策树经典的构建算法,其具有结构简单、清晰易懂的特点。虽然ID3比较灵活方便,但是有以下几个缺点:

 (1)采用信息增益进行分裂,分裂的精确度可能没有采用信息增益率进行分裂高

   (2)不能处理连续型数据,只能通过离散化将连续性数据转化为离散型数据

   (3)不能处理缺省值

   (4)没有对决策树进行剪枝处理,很可能会出现过拟合的问题

4.2 C4.5算法

 C4.5在ID3的基础上对上述三个方面进行了相应的改进:

      a)  C4.5对节点进行分裂时采用信息增益率作为分裂的依据;

      b)  能够对连续数据进行处理;

      c)  C4.5采用剪枝的策略,对完全生长的决策树进行剪枝处理,一定程度上降低过拟合的影响。

4.3 总结

C4.5是分类树最终要的算法,算法的思想其实很简单,但是分类的准确性高。可以说C4.5是ID3的升级版和强化版,解决了ID3未能解决的问题。要重点记住以下几个方面:

      1.C4.5是采用信息增益率选择分裂的属性,解决了ID3选择属性时的偏向性问题;

      2.C4.5能够对连续数据进行处理,采用一刀切的方式将连续型的数据切成两份,在选择切割点的时候使用信息增益作为择优的条件;

      3.C4.5采用悲观剪枝的策略,一定程度上降低了过拟合的影响。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值