Java 版 Manus 实现来了,Spring AI Alibaba 发布开源 OpenManus 实现

大家好,我是玄姐。

此次官方发布的 Spring AI Alibaba OpenManus 实现,涵盖了完整的多智能体任务规划、思考与执行流程。这一版本专为 Java 开发者设计,能够让开发者亲身体验多智能体协同工作的强大效果。它具备根据用户问题进行深度分析、操作浏览器、执行代码等能力,从而高效完成各类复杂任务。

Github 地址:

https://github.com/alibaba/spring-ai-alibaba

1

OpenManus 效果展示

不多说,直接看效果。以下通过几个实际问答记录,展示 Spring AI Alibaba OpenManus 的实际使用效果。

案例一、百度搜索并绘制股价趋势图

打开百度浏览器,在搜索框输入:“阿里巴巴最近一周股价”。根据搜索到的信息,绘制最近一周的股价趋势图,并将图表保存到本地目录。

图片

案例二、五一劳动节韩国旅行规划

我计划在五一劳动节假期前往韩国旅行,行程从杭州出发到韩国首尔,总预算为 10000 元。我希望体验韩国的风土人情、文化和普通百姓的生活,总行程计划为 5 天。请提供详细的行程安排,并制作一个简单的 HTML 旅行手册,其中包含地图、景点描述、基本韩语短语和旅行提示,供我整个旅程参考。

图片

案例三、文档翻译与保存

在本机的 /tmp/docs 目录下有一些中文文档,请依次将这些文档翻译为英文,并将翻译后的新文件保存到 /tmp/endocs 目录下。

图片

以上就是 Spring AI Alibaba OpenManus 的实际运行效果展示。

2

OpenManus 总体架构设计

Spring AI Alibaba Openmanus 与 Python 版本 OpenManus 设计理念相似,其总体架构设计如下图所示。

图片

从上图架构设计来看,这是一款基于多智能体(Agents)的智能自动协作系统。具体来说:

Planning Agent:负责将用户的问题分解为多个可顺序执行的步骤(step),并规划整个任务的执行流程。它通过调用 planning tool 动态生成一个串行的 Manus Agent 子工作流,为后续的执行提供清晰的步骤指导。

Manus Agent:多个 Manus Agent 组成一个链式结构,能够按照既定的顺序依次执行任务。在这个子工作流中,每个 Manus Agent 对应规划中的一个步骤(step),并且每个 Manus Agent 都采用了 ReAct 架构设计。这意味着它们可以通过多轮工具调用来完成具体的子任务,确保每个步骤都能高效、准确地执行。

Summary Agent:在所有步骤执行完成后,Summary Agent 负责对整个任务进行总结,提炼关键信息,为用户提供清晰、简洁的最终结果。

这种架构设计充分发挥了多智能体协作的优势,通过明确的分工和有序的执行流程,实现了复杂任务的高效处理。


3

OpenManus 实现总结与展望

第一、Spring AI Alibaba OpenManus 实现中的问题

当前的 OpenManus 实现存在以下主要问题:

  • 代码复杂度高:仓库中约 80% 的代码都用于解决流程编排问题,例如串联 Manus Agent 子流程、实现消息记忆、转发工具调用、修改全局状态等。这些工作可以通过一个高度抽象的 Agent 框架来实现,从而简化开发复杂度。

  • 工具覆盖度与执行效果有限:当前的工具,比如:浏览器使用、脚本执行工具等,覆盖范围和执行效果都较为一般,需要进一步优化。

  • 缺乏人为介入机制:在规划和工作流程中,无法人为介入进行审查、动态修改或回退等操作,这在实际应用中可能会限制灵活性。

  • 调试困难:当前 OpenManus 实现的效果调试相对较为困难,这给开发和优化带来了一定的挑战。

第二、Spring AI Alibaba 未来规划与解决方案

Spring AI Alibaba 是面向 Java 开发者的开源 AI 应用开发框架,它与 Spring 生态完美适配。开发者可以基于 Spring AI Alibaba 构建全新的 AI 应用,也可以使用它为传统 Spring Boot 应用进行智能化升级。

图片

从规划图中可以看出,除了框架原子抽象之外,Spring AI Alibaba 重点规划了 Multi-Agent 框架,以及配套的生态系统,如可视化评估平台、调试 Studio 等。

接下来,我们将发布 Spring AI Alibaba Graph 多 agent 框架,以及基于 Spring AI Alibaba Graph 的强化版 OpenManus 实现。我们预期新版本的代码量将比当前减少 70% 以上,整体易读性和效果将大幅提升,使开发者能够基于此构建面向任意场景的智能体应用。

目前,Spring AI Alibaba 已经支持 MCP 工具接入。在未来,我们将为 OpenManus 接入更成熟的 MCP server 实现,以提升整体工作表现和效果。

PS:

推荐大家加入《3天 基于 MCP 的 Agent 项目实战直播训练营》,为了帮助大家快速和低成本掌握 AI Agent 智能体技术,我和团队落地大模型项目3年,帮助60多家企业落地近100个项目,根据我们企业级实战的项目经验,打造基于 MCP、Manus、DeepSeek 的 AI Agent 项目实战直播训练营,截至今天已经报名2万名学员,如此火爆!原价199元,为了回馈粉丝的支持,价格直接降到 19元,点击以下报名。

4

3天 Agent 智能体项目实战直播课

3天的直播课,带你快速掌握基于  MCP、Manus、DeepSeek  的AI Agent 智能体核心技术和企业级项目实践经验。

模块一:AI Agent 智能体技术原理篇

全面拆解 AI Agent 智能体技术原理,深度掌握基于 MCP、Manus、DeepSeek 的 AI Agent 智能体三大能力及其运行机制。

模块二:AI Agent 智能体应用开发实战篇

深度讲解基于 MCP、Manus、DeepSeek 的 AI Agent 智能体技术选型及开发实践,学会开发 AI Agent 智能体核心技术能力。

模块三:AI Agent 智能体企业级案例实战篇

基于 MCP、Manus、DeepSeek,从需求分析、架构设计、架构技术选型、硬件资料规划、核心代码落地、服务治理等全流程实践,深度学习企业级 AI Agent 智能体项目全流程重点难点问题解决。

图片

3天时间,你能学会什么?

在真实项目实践中,你会获得4项硬核能力:

第一、全面了解 DeepSeek 大模型、MCP、Manus、AI Agent 智能体的原理、架构和实现方法,掌握核心技术精髓。

第二、熟练使用 Dify/Coze 平台、MCP、Manus、DeepSeek、LangChain、AutoGen 等开发框架,为企业级技术实践打下坚实基础。

第三、通过企业级项目实战演练,能够独立完成基于 MCP、Manus、DeepSeek 的 AI Agent 智能体的设计开发和维护,学会解决企业级实际问题的能力。

第四、为职业发展提供更多可能性,无论是晋升加薪还是转行跳槽,提升核心技术竞争力。

限时优惠:

原价199元,回馈粉丝们支持,现在报名只需19元!赶快加入把~~

5

添加助教直播学习

购买后,一定记得添加助理,否则无法进行直播学习👇

图片

参考来源:

https://mp.weixin.qq.com/s/EamMeRNxywwH1swZxr_j2g

⬇戳”阅读原文“,立即报名!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值